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OUTLINE 
• Introduction (TK) 
• Segmental Aspect & Speech Recognition Tech. (TK) 

• Pronunciation Structure Model (NM) 
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• CALL Systems (TK) 
• Database for CALL (NM) 
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(Traditional) LL  CALL 
• (Traditional) LL: magnetic audio tape 

• Single media, Sequential access 

 
 
 

• Computer-Assisted LL 
• Multi-media, Random access 

• Easier comparison of learner’s speech and model speech 
• Speech technology can be incorporated 

• Partly replace rater’s or teacher’s jobs 
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Speech Technology for LL 
• Automate assessment of proficiency 

• PhonePass  Versant 
• ETS-TOEFL 
• PSC (Putonghua Shuiping Ceshi) 

 
• Assist LL 

• With light supervision…CALL classroom 
• Self-learning 

• Need to keep motivating…Edutainment 
• Need to avoid enhancement of errors 
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Target Population of CALL 
• Non-native speakers 

• Particular L1  (ex.) English LL for Japanese people 
• Still diverse in proficiency level, but L1 knowledge useful 

• Unlimited L1  (ex.) Japanese LL for people in the world 
 

• Children (native) [Russel 1996] 
 

• Handicapped (Hearing or Articulation-impaired) people 
[Bernstein 1977] 
 

• Accented (dialect) people 
• Putonghua [Hu 2008] 
• Operators at Call Centers 
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Target Skill of CALL 
• Reading 
• Writing 
• Listening 
• Speaking-Pronunciation 

• Phone, word 
• Sentence, paragraph 
• Segmental, prosodic 

 
• Vocabulary, Grammar 
• Pragmatic Dialog (Communication) 

• travel-shopping, business-negotiation 
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Importance of Pronunciation Training 
[Bernstein 2003] 
 Comm = pron * lex * (1+syn+rhet+prag+soc) 

• comm. = communication skills 
• pron. = pronunciation 
• lex. = lexical control and vocabulary 
• syn. = syntax 
• rhet. = rhetorical form 
• prag. = pragmatics 
• soc. = sociolinguistics 

• Pronunciation skill affects entire communicative performance 
• Native-sounding pronunciation may not be needed, but 

acceptable (intelligible enough) pronunciation is desired for 
smooth communication 
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Articulation  Speech 

• Students must learn how 
to control articulators 
(vocal tract) 
 

• But it is not easy to 
observe the movement of 
these organs 
 

• Observation is feasible for 
acoustic aspect of speech 
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Visual Presentation of Articulation  
• Talking Head showing correct articulation [Massaro 2006] 
• Acoustic-to-articulatory inversion to estimate the articulatory 

movements [Badin 2010] 
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Segmental and Prosodic Aspects 
• Segmental Pronunciation 

• Phonemes (Sub-words) 
• Features: spectrum envelop-based 

 
• Prosody 

• Tones 
• Lexical accents 
• Intonation and rhythm patterns 
• Features: fundamental frequency, power, and duration 

 

 Kawahara 

 Minematsu 
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Speech Technology used in CALL 
• Speech analysis 

• spectrum, pitch, power 
• Feature normalization required for objective comparison with model 

speaker 

• (Constrained) speech recognition (ASR) 
• Speech segmentation-alignment 
• Error detection 
• Scoring 
• Need to model non-native speech and handle erroneous input 
• Not only segmental aspect, but also prosodic aspects 

• Speech synthesis (Minematsu) 
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Flowchart of Pronunciation Error Detection 
and Scoring 

Segmentation 

Error 
Detection Scoring 

Speech 
Analysis 

Acoustic 
Model 

Pronunciation 
Model 
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Formant and Articulatory Features 
• Potentially useful for effective diagnosis and feedback 

• Direct relationship with articulation 

• Not easy to make reliable and robust estimation 
• Not used in ASR 
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Classification of Vowels 

Place of articulation 

O
penness of m

outh 

front middle back 

narrow 

wide 


 -- 
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Relationship between Articulation and 
Formants 

Articulation Chart 

Place of Articulation 

Openness 

Formant Chart 
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Classification of Consonants (Japanese) 

voiced voiced voiced unvoiced unvoiced unvoiced unvoiced 

Bilabial 

Fricative 

Affricate 

Stop 

Semi-vowel 

Nasal 

Palatal Alveolar Glottal 
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MFCC: Mel-Frequency Cepstrum Coefficient 

• Most widely-used spectral feature 
• Mel-bandwidth  human perception 
• Cepstrum  spectrum envelope 

• orthogonal & less correlated  appropriate for statistical model 

 
1. DFT(FFT)  power spectrum 
2. Mel-conversion (Mel-band filter bank) 
3. Logarithm + Cosine Transform (IDFT)    cepstrum 
4. Extract low quefrency (12) coefficients 
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Feature Normalization in Speech Analysis 
• Feature normalization 

• for objective comparison with model speaker 
• for score calculation via speech recognition 
• against speakers (native/non-native) 
• against acoustic channels (database/users) 

 
• Normalization methods for MFCC 

• Cepstrum Mean Normalization (CMN) 
• Cepstrum Variance Normalization (CVN) 
• Histogram Equalization 
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Speaker Normalization in Speech Analysis 
• Vocal-Tract Length Normalization (VTLN) 

• Warping spectral dimension 
• Based on acoustic model likelihood 

 
 
 
 
 

• Pronunciation Structure (by Minematsu) 
• Invariant-feature (F-divergence) 
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Speech Recognition for CALL 
• Tasks 

• Speech segmentation-alignment 
• Error detection 
• Scoring 

• Challenges 
• Modeling non-native speech  
• Handling erroneous speech input 

• Constraint 
• Target word or sentence is given  
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ASR vs. CALL 
X: speech input,  W: phone label  word sequence (target) 
• ASR 

• For given X, find W that maximizes p(W|X) 
• Solved by max p(W)*p(X|W) 
• Each phone model p(x|w) is trained 

• CALL 
• W (oracle) and X (not reliable) given, 
• Segmentation: Viterbi forced alignment 
• Error detection: find W’ such that p(X|W’)>p(X|W) 
• Scoring: evaluate p(X|W)?? How to train the model?? 
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Flowchart of Pronunciation Error Detection 
and Scoring 
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Segmentation 
• Pre-process for scoring 
• Viterbi forced alignment with HMM representing W 
• In fact, there may be pronunciation errors in X 

• Insertion & deletion seriously affect alignment 
• Error prediction/detection may be necessary 
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Segmentation 

s l ou 

“snow”  /s l ou/ 

u /s u l ou/ 
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Flowchart of Pronunciation Error Detection 
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Error Detection 
• Find W’ such that p(X|W’)>p(X|W) 
• Compute scores p(x|w’) for alternative phones w’ for each 

segmented region x 
• When we take into account insertions and deletions, we need 

to generate a network of possible errors  
• Error prediction can be done with prior knowledge, such as L1 

• Alternative phones w’ can be taken from L1 
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Error Prediction in Pronunciation Model 

 
• No equivalent syllable in L1 

(ex.) sea → she 

• No equivalent phoneme in L1 
(ex.) l  r,  v  b 

• Vowel insertions 
(ex.) b-r → b-uh-r 

breath 

Pronunciation Error 
Prediction 

Pronunciation 
Dictionary 

Rules  
for errors 

b eh 
r th 

l uh s 
uh 

S E 

Error↑ 
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Error Detection based on Classification 
Approach 
• Not necessarily compute p(x|w’), 

but test if w’ is more likely than w 
 

• Explicit classifier (verifier) learning 
• Incorporate many features 
• Focus on error detection 
• by assuming segmentation 

• Linear Discriminant Analysis (LDA) 
• Support Vector Machines (SVM) 
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Other Issues in Error Detection 
• Filter and prioritize many (possible) individual phone errors 
• error miss >> false alarm 

• Not to discourage learners 

• Feedback 
• How to correct errors 
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Flowchart of Pronunciation Error Detection 
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Scoring: Standpoints 
• Native-likeness 
 “How close to golden native speakers?” 
 P(X|W,λG) 
• What is the “golden” model?  British? American?... 
• Impossible to free from L1 effect, speaker characteristic 

 
• Intelligibility 
 “How distinguishable (less confusable) from other phones?” 
 p(W|X) 
• Some pronunciation may not be recognized as anything 
• Need to consider L1 phones as well  assume L1 
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Scoring based on Native-Likeness 
• How close to golden native speakers? 

• Defined by p(X|W,λG)  λG: golden model 
• Normalized by p(X|W,λN)  λN: non-native model 
• In summary, likelihood ratio 
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Scoring based on Intelligibility 
• How distinguishable (less confusable) from other phones? 

• Measured by p(W|X)  
 
 

 
 
 

 
• Often called GOP (Goodness Of Pronunciation) 

• becomes 1 if best w’=w 
• Need to adapt to non-native speech 
• Need to consider L1 phones 
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Scoring to Assessment 
• Other factors 

• Duration modeling & evaluation 
• Other prosodic aspects…accent, intonation 
• Speech rate 

• Score mapping 
• Linear regression to fit to human rater’s evaluation 
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Flowchart of Pronunciation Error Detection 
and Scoring 
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Acoustic Modeling: Native vs. Non-native 
• Native speech 

• “Gold standard”, but does not match 

• Non-native speech 
• Matched, but error-prone 
• There is not large database available 

 
• Adaptation from native to non-native 
• Phone model of L1 is used for the same phone (in the IPA 

inventory) 
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Context-Independent Modeling 
• Context-dependent (e.g. triphone) models are widely used in 

ASR 
 

• Context-independent (monophone) model works well, even 
better, in CALL  
• Phonetic context is not reliable in non-native speech  insertion of 

vowels 
• Better segmentation accuracy even in native speech 
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Speaker Adaptation of Acoustic Model 
to Non-native Speech 
• Pronunciation of adaptation data may not be correct  
• Compare baseform label (automatic but error prone) and hand 

label (correct but costly) 
• Phone accuracy: measured based on hand-label including 

errors 
 
 
 
 
 

Acoustic model 
(native model) 

Phone accuracy 

No adaptation 
Hand label 
Baseform label 

75.4 
81.0 
80.6 

Lexicon baseform label is sufficient 
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Acoustic Model: 
Native model vs. Non-native model 
• Non-native speech database (MEXT project) 

• 13129 utterances by 178 speakers 
• Pronunciation errors are not annotated (too costly) 
• Dictionary label vs. automatic label with ASR 

• Both are error prone 

Acoustic model baseline speaker adapt 
Native English model 
Non-native model (baseform) 
Non-native model (ASR) 

75.4 
78.0 
77.1 

80.6 
81.8 
81.5 

•Non-native model is more effective, even with dictionary label 
•The superiority is reduced with speaker adaptation 
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Flowchart of Pronunciation Error Detection 
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Pronunciation Model 
• Standard baseform  possible errors 
• Constraint of L1 is effective 
• Linguistic knowledge 

• /v/  /b/, /ϑ/  /s/ 
• Substitution with similar phone of L1 
• Insertion of vowels 

 

• For GOP score computation, simple phone loop model (=no 
pronunciation model) is used 
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Error Prediction in Pronunciation Model 

 
• No equivalent syllable in L1 

(ex.) sea → she 

• No equivalent phoneme in L1 
(ex.) l  r,  v  b 

• Vowel insertions 
(ex.) b-r → b-uh-r 

breath 

Pronunciation Error 
Prediction 

Pronunciation 
Dictionary 

Rules  
for errors 

b eh 
r th 

l uh s 
uh 

S E 

Error↑ 
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Pronunciation Model Training 
• Hand-craft phonological rules 

• Expert knowledge needed 
• Too many rules cause false alarms, degrading recognition performance 
• Tradeoff between coverage and perplexity 

 
• Machine learning from annotated data 

• Statistical learning of rewriting rules [Meng 2011] 
• Decision tree to find critical rule set [Wang 2009] 
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• CALL System (TK)

• Database for CALL (NM)
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Another approach for segmental assessment

• Pronunciation training is not impersonation training [Minematsu’07].
• Impersonation = trying to speak exactly like a target speaker

• Not needed for pronunciation training.
• Students are not myna birds!!

• Likelihood scores are impersonation scores, not pron. scores.
•             = similarity bet. a student’s p and the mean speaker’s p in training data.
• Inadequate if a student is a child and HMMs are trained from adult teachers.

• Posterior probability (GOP) is a score with normalization.

• But alignment and recognition fails due to mismatch bet. students and teachers.
• Then, speaker-adapted HMMs are often used or native children’s data are collected.
• So, posterior probability is a score of impersonation, again?

forced alignment

cont. phoneme recognition
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Another approach for segmental assessment

• The essential problem lies in the use of spectrum envelopes.
• SE carries information both of linguistic content and speaker identity.

• But students imitate only the linguistic content!
• Speaker information in the teacher’s utterance is ignored by students.

• What does “Hcopy” copy from utterances? What do students copy from utterances?

• How to make a machine ignore the speaker component in an utterance?

• What is the commonly observed speech pattern?
• Among linguistically identical but acoustically different utterances.
• This pattern is the target of students’ imitation but what is that?

Short speakerTall speaker
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Another approach for segmental assessment

• Speaker difference is often modeled as feature space transformation.
• The question is “what are transform-invariant patterns or features?”
• f-divergence is invariant with any kind of invertible transform (sufficiency).

• The invariant features have to be f-divergence (necessity). [Qiao+’10]

• From individual sounds to their sound system [Minematsu’04]
• Each sound is dependent on speaker but their system is independent of speaker.
• Any event has to be characterized as distribution not as point.

 

 



 

 

 









 



   

  

 

 

Figure 1: Invariant structures. The structure doesn’t change by
the invertible transformation f and f−1. (f -divergence is ab-
breviated as f -div.)
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Figure 2: An invariant structure can be represented as a distance
matrix and a structure vector.

divergences. With multiple events, we can obtain a structure by
calculating f -divergences between any pair of them. For exam-
ple, a structure composed of f -divergences between states of
speaker-dependent phone HMMs can be speaker-independent.
Since f -divergence is invariant to any invertible transformation,
the obtained structure is robust to speaker difference and any
other distortions which can be expressed by an invertible trans-
formation of feature space (e.g. microphone difference).

2.2. Structure-based isolated word recognition

The invariant structure has been applied to isolated word
recognition and the experimental results showed good perfor-
mance [2, 3]. In this section, we explain how we used the in-
variant structure for isolated word recognition.

To begin with, we define the elements of the invariant struc-
ture (Fig. 2). An invariant structure in the left consists of M
nodes. We denote individual nodes as {si}M

i=1. Each node cor-
responds to a speech event (e.g. a phone or a state of an HMM)
and is expressed as a distribution in a feature space. We denote
individual edges as {eij} where 1 ≤ i ≤ M and i < j ≤ M .
Each edge is f -divergence between two distributions of nodes.
An invariant structure can be represented as a distance matrix in
the middle. If we use symmetric distance measure such as BD,
the upper-triangle elements of this distance matrix is sufficient
to represent the distance matrix. We extract the upper-triangle
elements as a feature vector and call it a structure vector in the
right. The dimension of a structure vector is 2-combination of
M nodes: M(M − 1)/2.

A framework of structure-based isolated word recognition
is shown in Fig. 3. First of all, we need to define nodes of a
structure. We use distributions of states of HMM as nodes. Left
side of the figure shows the procedure to extract a structure vec-
tor from an input utterance. First, a cepstrum vector sequence is
obtained from an input isolated utterance by acoustic analysis.
Then, to convert the vector sequence to a distribution sequence,
a left-to-right HMM is trained with this single cepstrum vector
sequence. Here, its transition probabilities are omitted. Since
all the distributions have to be estimated from a single utterance,
the maximum a posteriori (MAP)-based estimation is adopted.
Next, we divide a distribution sequence into several sub-streams
according to the dimension of cepstrum features [2]. After that,
we calculate distance matrix for each sub-stream. This method
is called multi-stream structuralization. Geometrically speak-





































 





Figure 3: Framework of the structure-based isolated word
recognition [2].

ing, this method equals to decomposing the feature space into
several sub-spaces and construct an invariant structure in each
sub-space. Multi-stream structuralization is effective to reduce
too strong invariance of an invariant structure and to find a rich
representation which provides sufficiently discriminative infor-
mation for classification [2]. Finally, all the upper-triangle ele-
ments of the multiple distance matrices are used as a structure
vector. Here, a dimension of the structure vector increases by a
factor of a number of sub-streams.

Right side of the Fig. 3 shows an acoustic model using the
invariant structure. We call it a statistical structure model. We
denote the number of words as K. We prepare the structure
model for each K words independently as shown in the right
side of Fig. 3. First, training samples of each K words were
converted into structure vectors. Here, we use the same topol-
ogy of a structure, meaning that the nodes of a structure and
the dimension of a structure are the same for all words. Then
we train Gaussians of structure vectors for each word from the
corresponding structure vectors obtained from the training data.
These Gaussians of the structure vectors are used as statistical
structure models. Similarity between an input structure vector
and a statistical structure model is calculated as log likelihood.
The statistical structure model showing the maximum log like-
lihood is the result of recognition. There are several alternatives
for statistical structure models. For example, [3] proposed a
discriminant analysis of eigen-structure method.

2.3. Limitation of the previous method

The previous method fixed the number of phones appearing in
the utterance to M . In other words, only isolated words con-
sisting of M phones were considered. In continuous speech
recognition, multiple words appear in the same utterance and
the previous method can’t be applied. To overcome this limita-
tion, we need some decoding algorithm. However, it is difficult
to use invariant structures for decoding because we need phone
alignments to get the invariant structure, but phone alignment
will be obtained by the decoding.

A possible solution is using HSM [5]. In the framework of
HSM-based ASR, a cepstrum vector sequence is first converted
to a distribution sequence. HSM provides algorithms of state
inference, probability calculation, and parameter estimation for
distribution sequences. However, HSM has been used only for
an artificial and small task because these algorithms are compu-
tationally too intensive.

There is yet another limitation. The previous method needs
training samples for each word to build statistical structure mod-
els for each word. However, preparing training samples for each
word is difficult when the vocabulary size becomes huge. More
generic units that are smaller than words are preferable.

KL-div, Bhattacharyya distance     f-div. 
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Another approach for segmental assessment

• From individual sounds to their sound system [Minematsu+’06]
• It should be focused on whether the native sound system is found in a 

student’s utterances not whether native sounds are found there.

• From phonetics to (structural) phonology
• Acoustic phonetics focus on acoustic features of individual phones.
• Structural phonology focuses on features of their sound system.
• Roman Jakobson (1896-1982)

• The sound shape of language (1987)
• We have to put aside the accidental properties of individual sounds and substitute a 

general expression that is the common denominator of these variables.

 

 



 

 

 









 



   

  

 

 

Figure 1: Invariant structures. The structure doesn’t change by
the invertible transformation f and f−1. (f -divergence is ab-
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divergences. With multiple events, we can obtain a structure by
calculating f -divergences between any pair of them. For exam-
ple, a structure composed of f -divergences between states of
speaker-dependent phone HMMs can be speaker-independent.
Since f -divergence is invariant to any invertible transformation,
the obtained structure is robust to speaker difference and any
other distortions which can be expressed by an invertible trans-
formation of feature space (e.g. microphone difference).

2.2. Structure-based isolated word recognition

The invariant structure has been applied to isolated word
recognition and the experimental results showed good perfor-
mance [2, 3]. In this section, we explain how we used the in-
variant structure for isolated word recognition.

To begin with, we define the elements of the invariant struc-
ture (Fig. 2). An invariant structure in the left consists of M
nodes. We denote individual nodes as {si}M

i=1. Each node cor-
responds to a speech event (e.g. a phone or a state of an HMM)
and is expressed as a distribution in a feature space. We denote
individual edges as {eij} where 1 ≤ i ≤ M and i < j ≤ M .
Each edge is f -divergence between two distributions of nodes.
An invariant structure can be represented as a distance matrix in
the middle. If we use symmetric distance measure such as BD,
the upper-triangle elements of this distance matrix is sufficient
to represent the distance matrix. We extract the upper-triangle
elements as a feature vector and call it a structure vector in the
right. The dimension of a structure vector is 2-combination of
M nodes: M(M − 1)/2.

A framework of structure-based isolated word recognition
is shown in Fig. 3. First of all, we need to define nodes of a
structure. We use distributions of states of HMM as nodes. Left
side of the figure shows the procedure to extract a structure vec-
tor from an input utterance. First, a cepstrum vector sequence is
obtained from an input isolated utterance by acoustic analysis.
Then, to convert the vector sequence to a distribution sequence,
a left-to-right HMM is trained with this single cepstrum vector
sequence. Here, its transition probabilities are omitted. Since
all the distributions have to be estimated from a single utterance,
the maximum a posteriori (MAP)-based estimation is adopted.
Next, we divide a distribution sequence into several sub-streams
according to the dimension of cepstrum features [2]. After that,
we calculate distance matrix for each sub-stream. This method
is called multi-stream structuralization. Geometrically speak-





































 





Figure 3: Framework of the structure-based isolated word
recognition [2].

ing, this method equals to decomposing the feature space into
several sub-spaces and construct an invariant structure in each
sub-space. Multi-stream structuralization is effective to reduce
too strong invariance of an invariant structure and to find a rich
representation which provides sufficiently discriminative infor-
mation for classification [2]. Finally, all the upper-triangle ele-
ments of the multiple distance matrices are used as a structure
vector. Here, a dimension of the structure vector increases by a
factor of a number of sub-streams.

Right side of the Fig. 3 shows an acoustic model using the
invariant structure. We call it a statistical structure model. We
denote the number of words as K. We prepare the structure
model for each K words independently as shown in the right
side of Fig. 3. First, training samples of each K words were
converted into structure vectors. Here, we use the same topol-
ogy of a structure, meaning that the nodes of a structure and
the dimension of a structure are the same for all words. Then
we train Gaussians of structure vectors for each word from the
corresponding structure vectors obtained from the training data.
These Gaussians of the structure vectors are used as statistical
structure models. Similarity between an input structure vector
and a statistical structure model is calculated as log likelihood.
The statistical structure model showing the maximum log like-
lihood is the result of recognition. There are several alternatives
for statistical structure models. For example, [3] proposed a
discriminant analysis of eigen-structure method.

2.3. Limitation of the previous method

The previous method fixed the number of phones appearing in
the utterance to M . In other words, only isolated words con-
sisting of M phones were considered. In continuous speech
recognition, multiple words appear in the same utterance and
the previous method can’t be applied. To overcome this limita-
tion, we need some decoding algorithm. However, it is difficult
to use invariant structures for decoding because we need phone
alignments to get the invariant structure, but phone alignment
will be obtained by the decoding.

A possible solution is using HSM [5]. In the framework of
HSM-based ASR, a cepstrum vector sequence is first converted
to a distribution sequence. HSM provides algorithms of state
inference, probability calculation, and parameter estimation for
distribution sequences. However, HSM has been used only for
an artificial and small task because these algorithms are compu-
tationally too intensive.

There is yet another limitation. The previous method needs
training samples for each word to build statistical structure mod-
els for each word. However, preparing training samples for each
word is difficult when the vocabulary size becomes huge. More
generic units that are smaller than words are preferable.
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Pronunciation structure
• Topological difference between a student and a teacher

• Speaker-dependent phoneme HMMs are build.
• Phoneme-based f-div. distance matrix is calculated from a student and a teacher.
• S : matrix from a student,  T : matrix from a teacher

•                     : difference matrix between S and T
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Figure 2: Structure-based pronunciation assessment

fined as

fdiv (p1, p2) =

I
p2(x)g

„
p1(x)
p2(x)

«
dx, (1)

where g : (0,∞) → R is a real convex function and g(1)
= 0. Many well known distances and divergences in statis-
tics and information theory can be seen as special examples
of f -divergences . For example, when

√
t is used for g(t),

− ln(fdiv) becomes Bhattacharyya distance (BD),

BD(p1, p2) = − ln

I p
p1(x)p2(x)dx. (2)

We use
√

BD to form the speech structures in this paper.

2.2. Structure-based pronunciation assessment

Fig. 2 shows a diagram of our previous structure-based pronun-
ciation assessment. A student’s structure S and a teacher’s
structure T are extracted from their respective utterances. A
structure is represented as a distance matrix. The structural dif-
ference is calculated by

D(S, T ) =

vuut 1
M

X

i<j

„
Sij − Tij

Sij + Tij

«2

, (3)

where S and T are two distance matrices whose elements
are calculated as

√
BD [4]. M is the number of distribu-

tions, which typically indicate phonemes. From these two dis-
tance matrices, we derive difference matrix whose elements are
((Sij − Tij)/(Sij + Tij))

2, shown in Fig. 2 In [4], through
structural comparison between each student in a Japanese-
English database and a specific teacher, a proficiency of that
student was automatically estimated. The obtained scores were
compared to the proficiency scores provided by the database
and high correlation was found. In [5], D is decomposed into a
phoneme-specific score Da

Da(S, T ) =

vuut 1
M

X

i

„
Sai − Tai

Sai + Tai

«2

(4)

Da was used to generate diagnostic instructions about a
phoneme a.
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Figure 3: Two-layered regression analysis
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Figure 4: Three-layered regression analysis

3. Multilayer regression analysis
3.1. Two-layered regression analyis

Generally speaking, speech structures have high dimensionality.
Let M denote the number of distributions. Then the number of
parameters is M(M−1)/2. The high dimensionality not only
increases the computational cost but also degrades the perfor-
mance. In structure-based ASR studies, PCA and LDA were
examined, and dimension reduction proved effective of improv-
ing the performance. To build a pronunciation learning system,
however, diagnostic instructions often have to be generated au-
tomatically. Considering this function, dimensionality reduc-
tion from M(M−1)/2 dimensions using PCA or LDA is not
appropriate for the system because the results are difficult to
analyze.

To deal with this problem, we integrate two-layered re-
gression analysis for structure-based pronunciation assessment.
Fig. 3 shows the diagram of two-layered regression analysis.
The first layer regression analysis is done using each row vector
of the difference matrix as an independent variable and teacher’s
score for each phoneme as a dependent variable. The estimated
weight vector wi gives us the information on which contrast to
phoneme i in a difference matrix is more important to evaluate
phoneme i. The results of the regression are estimated profi-
ciency scores for the phonemes. Then, second layer regression
analysis is done using these scores as independent variables and
teacher’s overall proficiency as a dependent variable. The es-
timated weight vector wall shows on which phonemes more
focus should be put. The results of the regression can be used
as a proficiency score for the student. This two layer regression
analysis reduces dimensionality like PCA or LDA, but unlike
these, provides scores for each phoneme at intermediate stages.

3.2. Three-layered regression analysis

We can obtain more than one difference matrix using more than
one teacher. Multiple difference matrices have more informa-
tion than a single difference matrix, but the dimensionality of

[Suzuki+’10]

[Minematsu+’06]
BD      f-div.

D
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Pronunciation structure
• Global Assessment Score calculated from D matrix

•    

• Very effective when the target sounds are vowel-like sounds only.
• Not effective when all the phonemes are considered.

•   
• Can treat all kinds of phonemes well.
• Not simple linear regression but multilayer linear regression is applied.
• D matrices obtained from different teachers (features) can be used additionally.
• Phoneme-based GOP scores can be used additionally.
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Figure 2: Structure-based pronunciation assessment

fined as
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p2(x)g
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p1(x)
p2(x)
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dx, (1)

where g : (0,∞) → R is a real convex function and g(1)
= 0. Many well known distances and divergences in statis-
tics and information theory can be seen as special examples
of f -divergences . For example, when
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t is used for g(t),

− ln(fdiv) becomes Bhattacharyya distance (BD),

BD(p1, p2) = − ln

I p
p1(x)p2(x)dx. (2)

We use
√

BD to form the speech structures in this paper.

2.2. Structure-based pronunciation assessment

Fig. 2 shows a diagram of our previous structure-based pronun-
ciation assessment. A student’s structure S and a teacher’s
structure T are extracted from their respective utterances. A
structure is represented as a distance matrix. The structural dif-
ference is calculated by
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, (3)

where S and T are two distance matrices whose elements
are calculated as

√
BD [4]. M is the number of distribu-

tions, which typically indicate phonemes. From these two dis-
tance matrices, we derive difference matrix whose elements are
((Sij − Tij)/(Sij + Tij))

2, shown in Fig. 2 In [4], through
structural comparison between each student in a Japanese-
English database and a specific teacher, a proficiency of that
student was automatically estimated. The obtained scores were
compared to the proficiency scores provided by the database
and high correlation was found. In [5], D is decomposed into a
phoneme-specific score Da

Da(S, T ) =
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Da was used to generate diagnostic instructions about a
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Figure 4: Three-layered regression analysis

3. Multilayer regression analysis
3.1. Two-layered regression analyis

Generally speaking, speech structures have high dimensionality.
Let M denote the number of distributions. Then the number of
parameters is M(M−1)/2. The high dimensionality not only
increases the computational cost but also degrades the perfor-
mance. In structure-based ASR studies, PCA and LDA were
examined, and dimension reduction proved effective of improv-
ing the performance. To build a pronunciation learning system,
however, diagnostic instructions often have to be generated au-
tomatically. Considering this function, dimensionality reduc-
tion from M(M−1)/2 dimensions using PCA or LDA is not
appropriate for the system because the results are difficult to
analyze.

To deal with this problem, we integrate two-layered re-
gression analysis for structure-based pronunciation assessment.
Fig. 3 shows the diagram of two-layered regression analysis.
The first layer regression analysis is done using each row vector
of the difference matrix as an independent variable and teacher’s
score for each phoneme as a dependent variable. The estimated
weight vector wi gives us the information on which contrast to
phoneme i in a difference matrix is more important to evaluate
phoneme i. The results of the regression are estimated profi-
ciency scores for the phonemes. Then, second layer regression
analysis is done using these scores as independent variables and
teacher’s overall proficiency as a dependent variable. The es-
timated weight vector wall shows on which phonemes more
focus should be put. The results of the regression can be used
as a proficiency score for the student. This two layer regression
analysis reduces dimensionality like PCA or LDA, but unlike
these, provides scores for each phoneme at intermediate stages.

3.2. Three-layered regression analysis

We can obtain more than one difference matrix using more than
one teacher. Multiple difference matrices have more informa-
tion than a single difference matrix, but the dimensionality of

[Minematsu+’06]

[Suzuki+’10]
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Figure 5: Three-layered regression analysis with GOP scores

diagram of three-layered regression analysis. The first layer re-
gression and the third layer regression is almost the same as the
first layer regression and the second layer regression for two-
layered regression analysis, respectively. At the second layer
regression in Fig. 4, the results of the first layer regression of
each phoneme are used as independent variables. The estimated
weight vector wi2 tells us which difference matrix is more im-
portant.

3.3. Multilayer regression analysis combined with GOP

The speech structure uses the contrastive aspect of speech and
discards the absolute features. In contrast, GOP mainly focuses
on the absolute aspects of speech. A GOP score of phoneme pi

is posterior probability of the phonemes given input utterances
approximately calculated as follows.

GOP (O, pi) ≈ log


P (opi |pi)

maxq∈Q P (opi |q)

ff
, (5)

where opi is the speech segment obtained for pi through forced
alignment. Q is the inventory of phonemes.

The speech structure and the GOP capture different aspects
of speech, so a combination of them might be useful. For exam-
ple, speech structures are useful for vowels because the acous-
tic features of vowels are strongly influenced by speaker differ-
ence. In contrast, GOP scores are expected to be effective for
unvoiced consonants because the features of unvoiced conso-
nants are much less influenced[11].

We propose a method to appropriately combine them. Fig. 5
shows a diagram of three-layered regression analysis combined
with GOP scores. The GOP score is combined with the results
of the first layer regression. At the second layer regression,
the n results of the first layer regression and the GOP score
of each phoneme are used as independent variables. The esti-
mated weight vector wi2 reflects the importance of each of the
n matrices and the GOP score to evaluate phoneme i.

4. Experiments
4.1. The database used in the experiments

The English Read by Japanese (ERJ) database was used in our
experiments, which contains 8 sets of read sentences [12]. Each
set is composed of about 60 sentences, read by 25 university
students, among whom about half are male. Those sentences are
a part of the sentences used in the TIMIT database. Proficiency
scores are also provided for all the 8 × 25 = 200 students,
which were rated by five native teachers of American English
with good knowledge of phonetics and Japanese English. In the
database, the utterances of the same sentences read by 20 native
speakers of General American are also included. 18 of them
read only half of the sentences and the remaining two (M08,
F12) read all the sentences.

Table 1: Conditions for the acoustic analysis
sampling 16bit / 16kHz
windows 25ms length and 10ms shift
parameters MFCC (12dim.)
HMMs speaker-dependent, context-independent, and

1-mixture monophones with diagonal matrix
topology 5 states and 3 distributions per HMM
monophones aa, ae, ah, ao, aw, ax, axr, ay, b, ch, d, dh, eh,

er, ey, f, g, hh, ih, iy, jh, j, k, l, m, n, ng, ow,
oy, p, r, s, sh, t, th, uh, u, w, v, w, y, z, zh, sil

4.2. Structure-based analysis and GOP-based analysis

Table 1 shows the acoustic analysis conditions. From the
database, 200 sets of speaker-dependent monophone HMMs
were trained. From the two teachers who read all the sentences,
8 sets of HMMs were trained, each corresponding to a sentence
set in the database. From the HMMs of a speaker, a speech
structure was calculated. A distance between phonemes was
obtained as the average over three

√
BD values between the

corresponding states. Eventually, 216 distance matrices were
formed in total. In two-layered regression analysis, only M08
was used as a common reference teacher for all the 200 stu-
dents. In three-layered regression analysis, M08 and F12 were
used. In addition, another structure using different features was
prepared. Low-pass filtered speech data were used to calcu-
late the structure. This is because [13] showed that the upper
bands of the spectrum of vowels carry a large portion of speaker
identity, which is irrelevant to pronunciation assessment. Thus
2 × 2 = 4 difference matrices were used for three-layered re-
gression analysis. Using the students’ 8× 25 distance matrices,
we did 8-fold cross-validation. We used ridge regression to es-
timate the weight vectors. In Fig. 3, Fig. 4 and Fig. 5, phoneme-
specific scores were used as dependent variables. In this paper,
however, since phoneme-level scores were not provided in the
database, we used speaker-level scores commonly for any layer.
Using the obtained optimal weights, each student’s structure of
the open set was compared to the teacher’s structure of that set.
Then, the correlation between human and machine scores was
calculated.

To calculate the GOP score, we prepared speaker-
independent and 4-mixture monophone HMMs trained with all
the utterances of the 20 native speakers in the database. Using
60 sentences from each student, we adapted the HMMs with
Maximum Likelihood Linear Regression (MLLR).

We examine three proposed methods: two-layered regres-
sion, three-layered regression, and three-layered regression
with GOP. For comparison, a sub-structure-based method [5]
and two GOP-based methods are tested, i.e., GOP with and
without MLLR adaptation. Both in the GOP-based methods,
regression analysis is also performed.

4.3. Results of pronunciation assessment experiments

Fig. 6 shows that averages and standard variations of corre-
lation coefficients between the human and machine scores.
The average correlation over all the teacher pairs is also plot-
ted as reference. As one can see, the multilayer regression
method achieves a higher correlation than our previous sub-
structure-based method [5], and three-layered regression with
GOP scores achieves the highest correlation (0.75) which is al-
most equal to the average correlation over teacher pairs (0.77).

Next, we examine the robustness of the speech structure
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Pronunciation structure
• Experiment using pronunciation structures [Suzuki+’10]

• About 60 utterances per student (teacher) to train a spk-dependent HMM set.
• Number of teachers used for the experiment

• Two-layered regression : only 1 male teacher
• Three-layers regression : only 1 male and 1 female teachers

• Correlation between human teachers’ scores and machine scores
































































   



























Figure 6: Averages and standard deviations of correlation coef-
ficients between human and machine scores













        























Figure 7: Averages of correlation coefficients between human
and machine scores with warped utterances

can see, the multilayer regression method achieves a higher cor-
relation than our previous sub-structure-based method [4], and
three-layered regression with GOP scores achieves the high-
est correlation (0.75) which is almost equal to the correlation
among teachers (0.77).

Next, we examine the robustness of the speech structure
with respect to the variation in vocal tract length (VTL). Dif-
ferences in VTL represent a major cause of non-linguistic vari-
ations, and this difference can be modeled by warping the fre-
quency axis of the power spectrum. Let ω denote angular fre-
quency of a base speaker and ω̂ angular frequency of another
(warped) speaker (0 < ω, ω̂ ≤ π). One popular warping func-
tion has the following form,

ejω̂ =
ejω − α
1 − ejωα

, (6)

where α represents a warping parameter (−1 < α < 1). With
negative/positive values of α, the VTL is lengthened/shortened.
α = −0.4/ + 0.4 approximately doubles/halves the VTL. As
it is very difficult to collect a speech samples with large VTL

variations in practice, we artificially generate utterances with
various VTLs by applying the above warping function on each
utterance in the ERJ database using the STRAIGHT morphing
technique [13].

The results are shown in Fig. 7. As one can see, three-
layered regression with GOP scores obtains the highest corre-
lation for every α. When |α| is large, the correlations of GOP
without adaptation drop significantly. The correlations of GOP
with adaptation are higher than that of GOP without adaptation,
but drop slightly with larger |α|. On the other hand, structure-
based methods show high and constant correlations when |α| is
large. Especially, the two-layered regression uses only a single
teacher’s structure for all the cases of α. This indicates that the
speech structure is much more robust to changes in VTL.

5. Conclusion
This paper proposed a multilayer regression technique and ap-
propriate combination of structure-based method and GOP-
based method for structure-based pronunciation assessment.
The experimental results show that our proposed methods
achieve high correlation coefficients (0.75) on the ERJ database,
which is higher than the results of our previous structure-based
method and GOP-based method. The results also show much
higher robustness of proposed method to changes in VTL com-
pared with the GOP-based method.
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• Experiment using warped utterances [Suzuki+’10]
• Simulated very tall students and very short students.
• Only a single teacher is used in the two-layered regression.

Pronunciation structure
































































   



























Figure 6: Averages and standard deviations of correlation coef-
ficients between human and machine scores













        























Figure 7: Averages of correlation coefficients between human
and machine scores with warped utterances

can see, the multilayer regression method achieves a higher cor-
relation than our previous sub-structure-based method [4], and
three-layered regression with GOP scores achieves the high-
est correlation (0.75) which is almost equal to the correlation
among teachers (0.77).

Next, we examine the robustness of the speech structure
with respect to the variation in vocal tract length (VTL). Dif-
ferences in VTL represent a major cause of non-linguistic vari-
ations, and this difference can be modeled by warping the fre-
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teacher’s structure for all the cases of α. This indicates that the
speech structure is much more robust to changes in VTL.
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This paper proposed a multilayer regression technique and ap-
propriate combination of structure-based method and GOP-
based method for structure-based pronunciation assessment.
The experimental results show that our proposed methods
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• Clustering “simulated” 96 students [Minematsu+’06,’07]
• Only vowels are focused.
• Speakers are 12 very good learners of American English (spk-A to spk-L).
• They are asked to produce AE vowels and JE vowels, uttered in word context.

• 7 differently accented vowel structures and a good and normal vowel structure.
• 1-7 : Japanese accented structures, 8 : non-accented structure

• ex) A, √, Q, ´, ‘, ç, E, I, i, U, u (Red vowels are replaced by Japanized versions.)

• 12 students x 8 pronunciations = 96 simulated students

Learner clustering based on their pron.
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A to L : student ID,     1 to 8 : pronunciation ID

54



Tutorial on CALL in INTERSPEECH2012 by T. Kawahara and N. Minematsu

• Acoustic clustering vs. structural clustering [Minematsu+’06,’07]

Learner clustering based on their pron.
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OUTLINE

• Introduction (TK)

• Segmental Aspect & Speech Recognition Tech. (TK)

•Pronunciation Structure Model (NM)

• Prosodic Aspect (NM)

• Speech Synthesis Tech. for CALL (NM)

• CALL System (TK)

• Database for CALL (NM)
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Basic prosodic features
• Three basic psychological terms and their acoustic correlates

• It seems that two distinct terms are not prepared well for perceptual length and 
physical length of a sound.

• Foreign accent and prosodic features
• Various types of prosodic deviation can be found in foreign accented speech 

depending on the native language of a learner and the target language.

psychological physical (acoustic) related phenomena

pitch fundamental frequency intonation, word accent
speaker identity

loudness energy, intensity,
sound pressure level

word accent
(word stress)

duration* duration* rhythm

timbre spectrum envelope phoneme
speaker identity
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Basic prosodic features
• “Those answers will be straightforward if you think them through...”

• Results of acoustic analysis using Praat.
• http://www.fon.hum.uva.nl/praat/
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Prosodic assessment of pronunciation
• Use of various prosodic metrics to estimate prosodic quality

• Duration-based metrics to predict “fluency” [Cucchiarini+’98,’02]
• Model-based and non-model based prosodic metrics [Maier+’09][Huang+’10]

• Additional prosodic features used to estimate overall proficiency
• Duration log-likelihood [Kim+’97], rate of speech [Franco+’00]
• Linear combination of various scores to predict proficiency [Hirabayashi+’10]

• Word accent (word stress) generation assessment
• Position [Minematsu+’97][Imoto+’99] and manner [Minematsu+’00]

• Rhythm assessment
• Rhythm metrics [Ramus+’99,’02][Grabe+’99,’02]

• Intonation(+energy) pattern comparison bet. a student and a model
• Word-based comparison [Suzuki+’08][Cheng+’11]
• Multiple units for comparison [Yamashita+’05]

• Corrective feedback generation
• Decision-tree based generation [Liao+’10], using a learner’s voice [Hirose+’03]

59



Tutorial on CALL in INTERSPEECH2012 by T. Kawahara and N. Minematsu

Duration-based metrics
• Duration-based metrics to predict “fluency” [Cucchiarini+’98,’02]

• 60 non-native learners of Dutch and 20 native speakers
• Forced alignment using an ASR engine
• 3 groups of raters, 3 raters per group (phonetician, therapist1, therapist2)
• Fluency assessment was done for each material (sentence?).

a second language would seem to be another obvious choice. experts. In 3.2. we look at the results concerning the quantitative
However, it turned out that, in practice, delivery problems of measures of fluency. Finally, in 3.3 the correlations between these
learners of Dutch are usually addressed by specially trained speech two types of results are considered.
therapists, who, therefore,  would seem to better qualify as ‘non-
native speech experts’ than language teachers. Finally, three
groups of raters were selected. The first group consisted of three
expert phoneticians (ph) with considerable experience in judging
pronunciation and other speech and speaker characteristics. The
second and the third groups each consisted of three speech
therapists (st1 and st2) who had considerable experience in treating
students of Dutch with pronunciation problems.

All raters listened to the speech material and assigned scores
individually. They could listen to the speech fragments as often as
they wanted. Fluency was rated on a scale ranging from 1 to 10.
No specific instructions were given for fluency assessment.
However, five sets of sentences spoken by five different speakers
were played to the raters before they started with the evaluation
proper, so as to help them anchor their ratings.

In order to limit the amount of material to be scored by each rater,
the  80 speakers were proportionally assigned to the three raters in
each group. The scores assigned by the three raters were then
combined to compute correlations with the automatic scores and
between rater groups. In order to compute intrarater and interrater
reliability, 12 sentence sets by different speakers were evaluated
twice by each rater while 44 sentence sets were scored by all three
raters in each group.

2.3. Automatic Assessment of Fluency
In this experiment the automatic speech recognizer described in [6]
was used. This ASR was trained by using the phonetically rich
sentences of the Polyphone corpus [7]. By means of the ASR a
number of quantitative measures known to be related to perceived
fluency were calculated. On the basis of the results from the
literature on the use of temporal variables in studying speech
production [1, 2, 3, 8, 9], the following measures were selected for
investigation: 

ros = rate of speech: # segments / total duration of
speech plus sentence-internal pauses

ptr = phonation/time ratio: total duration of speech
without pauses / total duration of speech plus
sentence-internal pauses

art = articulation rate : # segments / total duration of
speech without pauses

tdp = total duration of sentence-internal pauses: all
silences longer than or equal to 0.2 sec

alp = average length of pauses
#p = # of silent pauses
mlr = mean length of runs: average number of phones

occurring between unfilled pauses of not less than
0.20 secs

#fp = # filled pauses: , m
#dy = # dysfluencies (repetitions, restarts, repairs)

3. RESULTS
In this section the results of the present experiment are presented
in  the following order. In section 3.1. we report the results
concerning the fluency ratings assigned by the three groups of

3.1. Expert Fluency Ratings
The fluency scores assigned by the three rater groups were
analyzed to determine intrarater and interrater reliability (see Table
1).

intrarater reliability interrater reliability

rater 1 rater 2 rater 3

ph .97 .94 .95 .96

st1 .94 .97 .96 .93

st2 .90 .76 .91 .90

Table 1 Intrarater and interrater reliability coefficients
(Cronbach’s alpha) for the three rater groups, ph, st1, and st2.

As is clear from Table 1, both intrarater and interrater reliability
are very high. Only for rater 2 of the second group of speech
therapists is intrarater reliability considerably lower than for all
other raters, but it is still within acceptable limits. These results
clearly differ from those of previous studies, in which lower
degrees of reliability were reported, probably because raters
adopted different definitions of fluency [2, 3].

Besides considering interrater reliability, we also checked the
degree of interrater agreement. Closer inspection of the data
revealed that the means and standard deviations varied between the
raters in a group, but also between the raters in different groups
who rated the same speech material. The agreement within a group
of raters has obvious consequences for the correlation coefficient
computed between the combined scores of the raters and another
set of data (i.e. the ratings by another group or the quantitative
variables). This is so, because straightforward combination of the
scores would amount to pooling measurements made with different
yardsticks. When such an inhomogeneous set of measurements is
submitted to a correlation analysis with homogeneous measures,
the ’jumps’ at the splicing joints lower the correlation. The same
is true when several groups are compared: differences in
correlation may be observed, which are a direct consequence of
differences in the degree of agreement between the ratings. 

Therefore, we decided to normalize for the differences in the
values by using standard scores instead of raw scores. For this
normalization we used the means and standard deviations of each
rater in the overlap material (44 scores), because in this case all
raters scored the same samples. Within the individual raters the
values for the 44 overlapping samples hardly differed from the
means and standard deviations for the total material. Table 2 shows
the correlation coefficients between the groups of raters before and
after normalization. It is known that measurement errors affect the
size of the correlation coefficient; therefore, the correction for
attenuation formula was applied, so as to allow comparisons
between the various coefficients.
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Duration-based metrics
• Duration-based metrics to predict “fluency” [Cucchiarini+’98,’02]

• Each duration-based metic is examined as its ability to predict “fluency”.

a second language would seem to be another obvious choice. experts. In 3.2. we look at the results concerning the quantitative
However, it turned out that, in practice, delivery problems of measures of fluency. Finally, in 3.3 the correlations between these
learners of Dutch are usually addressed by specially trained speech two types of results are considered.
therapists, who, therefore,  would seem to better qualify as ‘non-
native speech experts’ than language teachers. Finally, three
groups of raters were selected. The first group consisted of three
expert phoneticians (ph) with considerable experience in judging
pronunciation and other speech and speaker characteristics. The
second and the third groups each consisted of three speech
therapists (st1 and st2) who had considerable experience in treating
students of Dutch with pronunciation problems.

All raters listened to the speech material and assigned scores
individually. They could listen to the speech fragments as often as
they wanted. Fluency was rated on a scale ranging from 1 to 10.
No specific instructions were given for fluency assessment.
However, five sets of sentences spoken by five different speakers
were played to the raters before they started with the evaluation
proper, so as to help them anchor their ratings.

In order to limit the amount of material to be scored by each rater,
the  80 speakers were proportionally assigned to the three raters in
each group. The scores assigned by the three raters were then
combined to compute correlations with the automatic scores and
between rater groups. In order to compute intrarater and interrater
reliability, 12 sentence sets by different speakers were evaluated
twice by each rater while 44 sentence sets were scored by all three
raters in each group.

2.3. Automatic Assessment of Fluency
In this experiment the automatic speech recognizer described in [6]
was used. This ASR was trained by using the phonetically rich
sentences of the Polyphone corpus [7]. By means of the ASR a
number of quantitative measures known to be related to perceived
fluency were calculated. On the basis of the results from the
literature on the use of temporal variables in studying speech
production [1, 2, 3, 8, 9], the following measures were selected for
investigation: 

ros = rate of speech: # segments / total duration of
speech plus sentence-internal pauses

ptr = phonation/time ratio: total duration of speech
without pauses / total duration of speech plus
sentence-internal pauses

art = articulation rate : # segments / total duration of
speech without pauses

tdp = total duration of sentence-internal pauses: all
silences longer than or equal to 0.2 sec

alp = average length of pauses
#p = # of silent pauses
mlr = mean length of runs: average number of phones

occurring between unfilled pauses of not less than
0.20 secs

#fp = # filled pauses: , m
#dy = # dysfluencies (repetitions, restarts, repairs)

3. RESULTS
In this section the results of the present experiment are presented
in  the following order. In section 3.1. we report the results
concerning the fluency ratings assigned by the three groups of

3.1. Expert Fluency Ratings
The fluency scores assigned by the three rater groups were
analyzed to determine intrarater and interrater reliability (see Table
1).

intrarater reliability interrater reliability

rater 1 rater 2 rater 3

ph .97 .94 .95 .96

st1 .94 .97 .96 .93

st2 .90 .76 .91 .90

Table 1 Intrarater and interrater reliability coefficients
(Cronbach’s alpha) for the three rater groups, ph, st1, and st2.

As is clear from Table 1, both intrarater and interrater reliability
are very high. Only for rater 2 of the second group of speech
therapists is intrarater reliability considerably lower than for all
other raters, but it is still within acceptable limits. These results
clearly differ from those of previous studies, in which lower
degrees of reliability were reported, probably because raters
adopted different definitions of fluency [2, 3].

Besides considering interrater reliability, we also checked the
degree of interrater agreement. Closer inspection of the data
revealed that the means and standard deviations varied between the
raters in a group, but also between the raters in different groups
who rated the same speech material. The agreement within a group
of raters has obvious consequences for the correlation coefficient
computed between the combined scores of the raters and another
set of data (i.e. the ratings by another group or the quantitative
variables). This is so, because straightforward combination of the
scores would amount to pooling measurements made with different
yardsticks. When such an inhomogeneous set of measurements is
submitted to a correlation analysis with homogeneous measures,
the ’jumps’ at the splicing joints lower the correlation. The same
is true when several groups are compared: differences in
correlation may be observed, which are a direct consequence of
differences in the degree of agreement between the ratings. 

Therefore, we decided to normalize for the differences in the
values by using standard scores instead of raw scores. For this
normalization we used the means and standard deviations of each
rater in the overlap material (44 scores), because in this case all
raters scored the same samples. Within the individual raters the
values for the 44 overlapping samples hardly differed from the
means and standard deviations for the total material. Table 2 shows
the correlation coefficients between the groups of raters before and
after normalization. It is known that measurement errors affect the
size of the correlation coefficient; therefore, the correction for
attenuation formula was applied, so as to allow comparisons
between the various coefficients.

Raw scores Standard scores

ph - st1 .92 .94

ph - st2 .82 .90

st1 - st2 .83 .90

Table 2 Correlations between the rater groups before
and after normalization

From Table 2 it appears that normalization has the effect of
enhancing the degree of correlation between the groups, as was to
be expected. Given the advantages of normalization, standard
scores will be used in the rest of the analyses in this study. 

In order to determine whether natives and non-natives significantly
differ on the expert fluency ratings, the standard scores of the three
rater groups were submitted to a t-test for equality of means. The
results of this test are shown in Table 3.

 ns sd ns  nns sd nns t-value df p

ph .88 .39 -.32 .70 9.55 59.98 .000

st1 .91 .13 -.27 .79 11.07 67.55 .000

st2 .86 .33 -.30 .83 8.90 75.77 .000

Table 3 Results of t-test for the fluency ratings of the three
rater groups.

As appears from Table 3, the mean scores assigned to the two
speaker groups are very similar for the three rater groups.
Furthermore, the two groups of  NS and NNS significantly differ
on the ratings assigned by the three rater groups, with the native
speakers being considered more fluent than the non-natives. It is
clear that not only the mean scores differ considerably between the
two speaker groups, but also the standard deviations, thus
indicating that the group of NS is more homogeneous in this
respect than the group of NNS.

3.2. Quantitative measures of fluency
Similarly, the quantitative measures of fluency were analyzed to
determine whether significant differences could be observed
between the two groups of natives and non-natives. Table 4 shows
that the two groups do indeed differ significantly on all measures.
These results may contribute to the discussion on the usefulness of
temporal variables in distinguishing between natives and non-
natives. Although it is true that native speech is not always
perfectly smooth and continuous [2], it appears that, on average,
native speech exhibits fewer pauses and dysfluencies, while speed
of delivery is higher than in non-native speech. Moreover, these
results are in line with those of previous studies that investigated
the speech performance of the same speakers in both L1 and L2
and that were based on smaller samples [5, 9]. 

Table 4 reveals that the number of filled pauses and dysfluencies
is extremely low. This is not surprising if we consider that we are
dealing with read speech and that these phenomena are known to

occur rarely in oral reading [9]. This suggests that these features
may be no good indicators of fluency in read speech. 

 ns sd ns  nns sd nns t-value df p

ros 12.74 1.35 9.68 1.94 6.54 78 .000

ptr 93.17 2.79 82.66 8.57 11.07 67.55 .000

art 13.65 1.19 11.61 1.37 5.97 78 .000

#p 1.42 1.23 7.20 5.47 -7.62 73 .000

tdp 0.45 0.42 3.10 2.76 -7.18 66.68 .000

alp 0.20 0.13 0.38 0.13 -5.236 78 .000

mlr 34.26 5.85 21.52 8.77 7.359 49.20 .000

#fp 0.00 0.00 0.14 0.35 -3.18 59 .002

#dy 0.12 0.22 0.62 0.76 -4.49 77.4 .000

Table 4 Results of t-tests for the nine quantitative measures.

3.3. Fluency Ratings and Quantitative
Measures

In the preceding sections we have shown that natives and non-
natives differ significantly both on fluency ratings and on a set of
quantitative variables that are supposed to be related to perceived
fluency. However, these results are not sufficient to conclude that
the machine-derived variables are indeed good fluency indicators.
To find out whether this is the case, the degree of correlation
between the fluency ratings and the quantitative variables has to be
calculated. The results of these analyses are shown in Table 5.

Phoneticians Speech Speech
therapists 1 therapists 2

ros .93 .91 .90

ptr .86 .88 .89

art .88 .84 .81

#p -.84 -89 -.89

tdp -.81 -.86 -.86

alp -.65 -.62 -.65

mlr .85 .86 .88

#fp .34 .33 .38

#dy .42 .48 .40

Table 5 Correlations (corrected for attenuation) between
the fluency ratings by the three rater groups and the
quantitative measures.
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Speech rhythm metrics
• The three rhythm classes

• Stress-timed languages: English, German, Dutch, Portuguese, etc
• Syllable-timed languages: French, Italian, Spanish, Cantonese Chinese, etc
• Mora-timed languages: Japanese, etc
• X-timed = the perceptual interval between two consecutive Xes is constant

• Stress isochrony, syllable isochrony, and mora isochrony

• Pairwise Variability Index (PVI) [Grabe+’99,’02]
• Raw PVI (rPVI) and normalized PVI (nPVI)

•       is the duration of the k-th interval. m is the number of intervals.
• “interval” is the vocalic interval or the consonantal interval.
• Used to classify input utterances as one of the three rhythm groups
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Speech rhythm metrics
• Combination of durational statistics of ΔV, ΔC and %V [Ramus’99,’02]

• ΔX : standard deviation of the duration of Vowel intervals or Consonant intervals 
within a sentence
• X interval: interval of a X or a sequence of consecutive Xes
• Intervocalic interval: interval of a consonant or a consonant sequence 

• %V : percentage of duration taken up by vowel intervals within a sentence
• Used to cluster various languages in terms of their rhythmic structure.

Acoustic correlates of linguistic rhythm: Perspectives

Franck Ramus

Laboratoire de Sciences Cognitives et Psycholinguistique (EHESS/CNRS)
54 boulevard Raspail, 75006 Paris, France

ramus@lscp.ehess.fr

Abstract
The empirical grounding of a typology of languages’ rhythm
is again a hot issue. The currently popular approach is based
on the durations of vocalic and intervocalic intervals and their
variability. Despite some successes, many questions remain.
The main findings still need to be generalised to much larger
corpora including many more languages. But a straightforward
continuation of the current work faces many difficulties. Per-
spectives are outlined for future work, including proposals for
the cross-linguistic control of speech rate, improvements on the
statistical analyses, and prospects raised by automatic speech
processing.

1. Introduction
The history of rhythm typology is that of a debate between pro-
rhythm class advocates and their opponents. The former argued
that the languages of the world can be categorised into a small
number of classes: typically, stress-timed, syllable-timed and
perhaps mora-timed languages [19, 1, 13, 20]. The latter op-
posed that empirical evidence for the classes was weak if not
altogether absent [2, 22, 3]. The search for empirical evidence
may indeed have focused too much on the notion of isochrony,
i.e., that stress-timed languages should have inter-stress inter-
vals of a roughly constant duration, whereas syllable-timed ones
should have syllables of constant duration.

However, another approach, based on the variability of
the duration of vowels, was more successful. It relies on the
idea that stress-timed languages allow vowel reduction, in con-
trast with syllable-timed languages. Therefore, vowel duration
should be more variable in stress-timed languages. This ap-
proach first provided evidence for rhythmic differences between
British and Singapore English [14, 15]. In an independent study,
we examined the duration and variability of vocalic and inter-
vocalic intervals1 in eight languages [21]. The rationale behind
the consideration of inter-vocalic intervals is that stress-timed
languages also tend to allow more complex syllables, and there-
fore longer and more variable sequences of consonants than
syllable-timed languages. Figure 1 recalls the main results.
We found that along two dimensions (%V: percentage of du-
ration taken up by vocalic intervals; �C: standard deviation
of the duration of consonantal intervals within a sentence), lan-
guages are not scattered randomly, but are clustered in groups
that strongly resemble rhythm classes: English, Dutch and Pol-
ish as stress-timed languages, French, Spanish, Italian and Cata-
lan as syllable-timed languages, and Japanese as a mora-timed

1Vocalic intervals are vowels and sequences of consecutive vowels,
regardless of whether they belong to the same syllable (or word, for
that matter) or not. Similarly, inter-vocalic or consonantal intervals are
made up of consonants and sequences of consecutive consonants.
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Figure 1: Standard deviation of consonantal intervals vs. pro-
portion of vocalic intervals in 8 languages, 5 sentences times 4
speakers per language (reproduced from [21]).

language. This provides very suggestive evidence in favour of
the rhythm class hypothesis.

Note that this evidence is far from definitive. For one thing,
it is compatible with an alternative interpretation: that the mea-
sures taken reflect rhythmic differences, but not classes. It is
indeed entirely possible that when more languages are added,
the clusters will be drowned in a uniform rhythmic continuum
or space. This idea of a continuum in place of classes has
been evoked in the past [4, 17] and has been revived in a re-
cent study [12].

It is quite clear that we are still a long way from a fully-
fledged, empirically-based rhythm typology. In this paper, we
will discuss the limitations of the data accumulated so far, and
reflect on the direction to take in order to eventually achieve a
typology.

2. Limitations and problems
If the conclusions of our study are to hold, the main results will
need to survive a considerable enlargement of the corpus. The
corpus can in principle be extended to many more languages,
speakers, samples, speech rates, speech registers, etc. Several
teams have actually set out to do just this. But such an enlarge-
ment faces many difficulties. The recent study by Grabe and
Low [12] will be used as an illustration of those difficulties.

Indeed, Grabe and Low (henceforth, GL) studied the vari-
ability of vocalic and consonantal intervals in 18 languages, and
concluded that although there is evidence for rhythmic diver-
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Figure 2: Intervocalic raw Pairwise Variability Index vs. vo-
calic normalised Pairwise Variability Index in the RNM corpus.
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Figure 3: Standard deviation of consonantal intervals vs. stan-
dard deviation of vocalic intervals (reproduced from RNM
[21]).

2.4. Discussion

The analysis performed in this section leads to the following
conclusions:

• It is essential to have a variety of speakers for each lan-
guage;

• It is essential to control for speech rate, either by con-
straining the corpus, or by using a normalisation proce-
dure;

• The usefulness of variables such as �V and �C may
well be limited to corpora where speech rate is strictly
controlled.

As a consequence, the work we have done in RNM [21] is dif-
ficult to extend as it is. As the comparison with GL’s study
shows, the heavy methodological constraints it requires may be
an advantage as regards the clarity of the data. But there is no
doubt that this is a drawback as regards the generalisability of
the results. Indeed, extensions of this work will need to follow
an identical method in order to produce anything comparable.

Until now, we have highlighted the need for speech rate
control, but we have always mentioned it as if it was the most
straightforward thing to do. Unfortunately, this is not the case.
We now turn to a broader discussion of the cross-linguistic eval-
uation of speech rate.

3. Speech rate across languages
Since rhythm is, at least in part, a matter of duration, and dura-
tions are affected by speech rate, all students of speech rhythm
must be concerned by effects due to speech rate. Since our pur-
pose here is to define a typology of rhythm, speech rate must
be treated in a manner that is valid across all languages. This is
where the issue becomes really thorny. We feel that this matter
is seldom discussed and deserves a thorough treatment here.

In the RNM study, we chose to match both the number of
syllables per sentence and sentences’ duration across languages
by selecting for each speaker 5 appropriate sentences from a
corpus of about 50. This approach by selection is itself ques-
tionable. One might consider other methods, like defining a
speech rate a priori, and asking speakers of all languages to
adopt it. Whatever the method, the question will remain: what
do we want to match? In other words, how do we measure
speech rate in a way that is valid across languages?

Let us note that the question does not vanish if we choose to
normalise for speech rate in order to avoid matching the corpus.
This option has to face the equivalent question: what do we
want to normalise? In other words, what quantity do we put in
the denominator? Furthermore, both RNM and GL have argued
that it is interesting to look separately at vocalic and intervocalic
intervals. But we have reasons to suspect that these two types of
intervals are not affected by speech rate in the same proportion,
and in addition this proportion may well vary across languages.

3.1. Problems with standard definitions of speech rate

Which unit? Among all possible measures of speech rate, the
most widely accepted and used seems to be syllable rate, i.e., the
number of syllables per second. But one might argue that the
syllable is not the proper speech unit to consider. Shouldn’t we
count morae per second? Or phonemes? Or feet? Or vocalic
and intervocalic intervals? Or units of meaning?

One unit for all, or different units for different languages?
It might even be that the appropriate unit is not the same in all
languages. What about feet for English, syllables for French,
and morae for Japanese? Obviously, this approach would lead
to the observation that Japanese is much faster than English,
since Japanese morae are much shorter than English syllables.
But even the "one unit for all" approach has this problem. Since
Japanese syllables are simpler than English ones, one would
also expect that Japanese speakers are able to produce more
syllables per second than English speakers4. Normalising or
matching syllable rate therefore leads to ignore part of the rhyth-
mic differences due to syllable structure.

What counts as a unit? Supposing a given unit is chosen
(say, the syllable), then comes the problem of defining what
counts as a unit in different languages. Are we talking about
phonetic or underlying syllables? Depending on the answer,
matching syllable rate between European and Brazilian Por-
tuguese would yield highly different results, since they both

4This is true on average in our corpus
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conclusions:

• It is essential to have a variety of speakers for each lan-
guage;

• It is essential to control for speech rate, either by con-
straining the corpus, or by using a normalisation proce-
dure;

• The usefulness of variables such as �V and �C may
well be limited to corpora where speech rate is strictly
controlled.

As a consequence, the work we have done in RNM [21] is dif-
ficult to extend as it is. As the comparison with GL’s study
shows, the heavy methodological constraints it requires may be
an advantage as regards the clarity of the data. But there is no
doubt that this is a drawback as regards the generalisability of
the results. Indeed, extensions of this work will need to follow
an identical method in order to produce anything comparable.

Until now, we have highlighted the need for speech rate
control, but we have always mentioned it as if it was the most
straightforward thing to do. Unfortunately, this is not the case.
We now turn to a broader discussion of the cross-linguistic eval-
uation of speech rate.

3. Speech rate across languages
Since rhythm is, at least in part, a matter of duration, and dura-
tions are affected by speech rate, all students of speech rhythm
must be concerned by effects due to speech rate. Since our pur-
pose here is to define a typology of rhythm, speech rate must
be treated in a manner that is valid across all languages. This is
where the issue becomes really thorny. We feel that this matter
is seldom discussed and deserves a thorough treatment here.

In the RNM study, we chose to match both the number of
syllables per sentence and sentences’ duration across languages
by selecting for each speaker 5 appropriate sentences from a
corpus of about 50. This approach by selection is itself ques-
tionable. One might consider other methods, like defining a
speech rate a priori, and asking speakers of all languages to
adopt it. Whatever the method, the question will remain: what
do we want to match? In other words, how do we measure
speech rate in a way that is valid across languages?

Let us note that the question does not vanish if we choose to
normalise for speech rate in order to avoid matching the corpus.
This option has to face the equivalent question: what do we
want to normalise? In other words, what quantity do we put in
the denominator? Furthermore, both RNM and GL have argued
that it is interesting to look separately at vocalic and intervocalic
intervals. But we have reasons to suspect that these two types of
intervals are not affected by speech rate in the same proportion,
and in addition this proportion may well vary across languages.

3.1. Problems with standard definitions of speech rate

Which unit? Among all possible measures of speech rate, the
most widely accepted and used seems to be syllable rate, i.e., the
number of syllables per second. But one might argue that the
syllable is not the proper speech unit to consider. Shouldn’t we
count morae per second? Or phonemes? Or feet? Or vocalic
and intervocalic intervals? Or units of meaning?

One unit for all, or different units for different languages?
It might even be that the appropriate unit is not the same in all
languages. What about feet for English, syllables for French,
and morae for Japanese? Obviously, this approach would lead
to the observation that Japanese is much faster than English,
since Japanese morae are much shorter than English syllables.
But even the "one unit for all" approach has this problem. Since
Japanese syllables are simpler than English ones, one would
also expect that Japanese speakers are able to produce more
syllables per second than English speakers4. Normalising or
matching syllable rate therefore leads to ignore part of the rhyth-
mic differences due to syllable structure.

What counts as a unit? Supposing a given unit is chosen
(say, the syllable), then comes the problem of defining what
counts as a unit in different languages. Are we talking about
phonetic or underlying syllables? Depending on the answer,
matching syllable rate between European and Brazilian Por-
tuguese would yield highly different results, since they both
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Various prosodic metrics
• Lang-independent feature set for prosody evaluation [Maier+’09]

• Word-based 21 metrics + sentence-based 16 metrics
• Related to F0, energy, and duration
• 37 metrics x [max, min, mean, std] = 148 features

• Text-independent 187 prosodic features
• Support vector regression to predict prosodic quality
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Figure 1: Computation of prosodic features within one word (after [6])

α∗
i where both are nonzero at the same time. Furthermore αi

and α∗
i are zero if |ŷi − yi| ≤ ε. Therefore, support vectors

can only be found outside the ε-tube (cf. Figure 2). With the
Support Vector Expansion, the prediction of ŷi from Eq. 1 can
be written without the actual weight vector #w:

ŷi =

"

X

j

(αj − α∗
j ) #xj

#"

#xi + b (5)

Hence, only the Support Vectors have to be stored in order to
compute the regression.

3.4. Feature Selection

In this work Correlation-based Feature Subset (CFS) selection
combined with a best-first search as provided by [9] is applied
to select an optimal subset of the full feature set. The idea be-
hind the CFS selection algorithm is to compute the correlation
of a composite variable XS to an outside variable Y as the cri-
terion for the quality. In [10, p.182] a formulation of this corre-
lation as a composition of the inter-correlations r

YxS
i

between
the target variable Y and the NS individual features xS

i and the
intra-correlations rxS

i
xS

j
is found:

rYXS =
NSr

YxS
i

q

NS + NS(NS − 1)rxS
i

xS
j

= GS
CFS (6)

r denotes the mean of the respective correlations. In [11] Eq. 6
is used to create a fast and efficient algorithm to select features
which have a good correlation with the target variable. The
computation is very efficient, since the correlations between all
variables just have to be computed once. After their computa-
tion the single correlations are stored in a lookup-table which
allows fast and easy access to the values.
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Figure 3: Correlation between the experts’ opinion and the
prediction of the LOO system for the German language and the
text-independent features (r = 0.88).

4. Experiments and Results
All experiments were conducted in a leave-one-speaker-out
(LOO) manner. Table 1 reports Pearson’s correlation coeffi-
cients between the raters and the automatic system. All reported
correlations are significant at p < 0.01. Spearman’s correlation
coefficient was also investigated. Since the data was normally
distributed both coefficients were in the same range. Hence,
only Pearson’s correlation is reported. The reported results were
obtained with a linear SVM kernel. The use of higher polyno-
mials did not yield any improvements.

The inter-rater correlation was very high with 0.88 for the
German version of the text and 0.92 for the Japanese version.
Investigation of the agreement between the two raters of each
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Table 1: Correlations between the automatic evaluation system
and the human raters in comparison to the inter-rater correla-
tion

language inter- word-based text-independent
rater SVR SVR (CFS) SVR SVR (CFS)

German 0.88 0.89 0.92 0.88 0.75
Japanese 0.92 - - 0.76 0.83

language with the weighted Kappa [12] yielded coefficients of
κ = 0.72 for German and κ = 0.82 for Japanese which corre-
sponds to a high agreement in both cases.

With the word-based prosodic features, a correlation of 0.89
could be achieved. Feature selection in each leave-one-out iter-
ation could improve this even further to 0.92. A word-based
prosodic evaluation was not performed on the Japanese version
of the text because segmentation into words as in western lan-
guages is not straightforward in Japanese.

The text-independent prosodic features also yielded a high
performance on the German speech data with a correlation of
0.88 (cf. Figure 3) without feature selection and 0.75 with CFS
selection. The correlations between the perceptive evaluation
and the automatic system on the Japanese data was also com-
parable: A correlation of 0.76 was achieved without CFS se-
lection and 0.83 with feature selection. A reason for the differ-
ences between German and Japanese could be that the feature
set was originally designed and evaluated with German speech
data only. Hence, some of the features might not be meaningful
for the Japanese data and should therefore be excluded.

5. Discussion

The perceptive evaluation of the native speakers was very con-
sistent in German and in Japanese. Hence, the raters could de-
termine speakers with natural prosody easily and their agree-
ment on this feature was high. Therefore, the mean of the raters’
opinion is suitable to train an automatic evaluation system.

The results of the word-based evaluation system were in
the same range as the human evaluation. In fact the corre-
lation was even slightly higher than the inter-rater correlation
in two of four cases. No significant difference was found
(p > 0.05), i.e., the automatic evaluation is as reliable as the
ones of the experts. Significance testing with the u-test was
performed after [13].

On the German data the results of the text-independent
prosodic features were slightly worse than the word-based
prosodic features. However, no significant difference between
the inter-rater correlation, the word-based evaluation system,
and the text-independent evaluation system was found (p >
0.05). Hence, the performance of both evaluation systems and
the perceptive evaluation can be regarded as comparable.

With the text-independent system, an automatic evaluation
of the prosody of the Japanese data could also be performed. It’s
performance was worse than the experiments with the German
data. A significance test between the inter-rater correlation and
the SVR system showed that there was no significant difference
between both (p > 0.05). Thus, also the automatic evaluation
of the Japanese automatic system can be regarded as compara-
ble to the perceptive evaluation.

6. Summary
Our novel approach is able to evaluate the naturalness of the
prosody of a speaker. One variant of the system is independent
of the language, because it obtains the time alignment informa-
tion automatically from the structure of the speech data using
voiced and unvoiced segments. Hence, there is no speech recog-
nition required and the system can be applied as is to any other
language.

On the German data it could be shown that these features
allow a comparable performance to word-based prosodic fea-
tures. The accuracy of the system was in the same range as the
perceptive evaluation of native speakers of the respective lan-
guage. For German the inter-rater correlation was 0.88 while
the system’s performance also was 0.88 and for Japanese the
inter-rater correlation was 0.92 while the system had a correla-
tion of 0.83 to the mean of the human raters.
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mann, “Prosodic Feature Evaluation: Brute Force or Well De-
signed?” in Proc. of the 14th Intl. Congress of Phonetic Sciences
(ICPhS), vol. 3, San Francisco, USA, 1999, pp. 2315–2318.

[5] A. Batliner, J. Buckow, R. Huber, V. Warnke, E. Nöth, and H. Nie-
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Linear combination of many features
• Prediction of overall naturalness [Hirabayashi+’10]

• Many possible features are linearly combined to predict pron. scores
• LL with native HMMs = LLnative

• LL with HMMs adapted into non-native = LLnon-native

• LL obtained with phone-loop grammar and native HMMs = LLbest-native

• LL ratio = LR = LLnative - LL2non-native

• Posterior probability = LR’ = LLnative - LLbest-native

• Another LL ratio = LRadapt = LLbest-native - LLbest-non-native

• Another LL ratio = LRmother = LLbest-native - LLbest-mother-tongue

• Phoneme recognition rates (rates of correct, substitution and deletion)
• Word recognition results (rates of correct, substitution and deletion)
• Standard deviation of power and F0
• Phoneme-based rate of speech
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Linear combination of many features

• Prediction of overall naturalness [Hirabayashi+’10]
• Results of linear prediction of pronunciation scores

Table 2: Correlation between acoustic measures and
pronunciation score (”*” denotes a text-
independent measure)

Measure 1 sentence 5 sentences 10 sentences
LLnative -0.466 -0.625 -0.669

LLnon−native -0.638 -0.771 -0.804
LR 0.800 0.859 0.880

* LLbest -0.473 -0.613 -0.660
* LRmother 0.719 0.804 0.811
* LRadap 0.772 0.827 0.822

LR′ 0.214 0.273 0.349
Phoneme recog(Sub.) -0.298 -0.567 -0.662
Phoneme recog(Del.) 0.056 0.116 0.220
Phoneme recog(Cor.) 0.299 0.461 0.483

Word recog(WSJ, Cor.) 0.102 0.163 0.261
Word recog(EURO, Cor.) 0.113 0.256 0.281

* Power -0.066 -0.057 -0.002
* Pitch(F0) 0.495 0.638 0.691

Rate of speech 0.523 0.692 0.773

(f). Phoneme recognition result
We used the correct rate, substitution rate, and deletion rate for
arbitrary phoneme recognition. The test data are limited to the
correctly transcribed parts by man2/4, which means that two
teachers out of 4 transcribed the same label.

(g). Word recognition result
We used the correct rate for word recognition with a language
model. The WSJ database (WSJ) or Eurospeech’93 paper
(EURO) was used to train the bigram language models[11]. The
test data are limited to the correctly transcribed parts by man2/4.

(h). Standard deviation of powers and F0

The standard deviation of powers (Power) and fundamen-
tal(pitch) frequencies (F0) were calculated.

(i). Rate of speech
We used the rate of speech of the sentence. Silences in the ut-
terance were removed. We calculated each sentence’s ROS as
the number of phonemes divided by the duration in seconds.

3.2. Classification Methods
We used three classification methods for minimum phoneme
pairs. Two were discriminative models based on an SVM
and NN (Feed-forward Neural Network), respectively, while
the third was a generative model based on an HMM-based
method[16][17].

We chose 9 phoneme pairs for the evaluation of pronuncia-
tion ; l/r, m/n, s/sh, s/th, b/v, b/d, z/dh, z/d, and d/dh.

(a). HMM
The target phoneme in an utterance was extracted by a forced
Viterbi alignment based on HMMs. Then, the extracted part is

Table 4: Correlation between phoneme pair classification rate
and pronunciation score (20 Japanese speakers)

Correlation intonation rhythm segmental
SVM 0.693 0.514 0.605
NN 0.734 0.471 0.567

HMM 0.508 0.418 0.124

classified into the target phoneme or the rival phoneme by the
likelihood HMM, calculated on a by frame-by-frame basis.

(b). SVM/NN
Five successive frames in the center of the extracted part were
used as the input pattern for an SVM or NN classifier.

4. Estimating Pronunciation score
4.1. Statistical Method for Acoustic Measures
Table 2 summarizes the correlation between each acoustic mea-
sure and the learner’s pronunciation score which was scored by
native English teachers. Fairly high correlations were obtained
for most of the acoustic feature measures (e.g. LLnon−native,
LR, LRmother , LRadap, ROS).

A linear regression model derived from the relationship be-
tween the acoustic measures and the learner’s scores was pro-
posed for estimating the pronunciation score. We established
various independent variables {xi} as parameters and the value
Y as the learner’s score, and defined the linear regression model
as Y = Σiαi × xi + ε, (1)
where ε is a residual [9][10]. The coefficients {αi} were deter-
mined by minimizing the square of ε. We experimented with
both closed and open data for the speakers. Next, we investi-
gated whether or not our proposed method was independent of
the speaker. For the open experiment on speakers, we estimated
the regression model using utterances from 20 speakers and es-
timated the score of the remaining speakers. We repeated this
experiment for every speaker.

Table 3 summarizes the results of the pronunciation score
for closed and open data at 1, 5, and 10 sentence levels. By
combining certain acoustic measures, we obtained a correlation
coefficient of 0.887 for pronunciation scores using open data at
the 10 sentence level.

This confirms that the outcome of the proposed automatic
estimation method for pronunciation score is almost the same
as the evaluation by English teachers.

4.2. Classification Method by HMM, SVM, and NN
Figures 2 and 3 illustrate the classification rates of minimum
phoneme pairs by HMM, SVM, and NN. According to Figure
2, the average classification rates are about 95% by SVM, 94%
by NN, and 82% by HMM for 8 native speakers. From Figure
3, it can be seen that the average classification rates by SVM are
about 95% for 8 native speakers and about 83% for 25 Japanese

Table 3: Correlation between combination of acoustic measures and learner’s pronunciation score by human raters
Number of sentences for evaluation 1 sentence 5 sentences 10 sentences

Acoustic measures CLOSED SP.OPEN CLOSED SP.OPEN CLOSED SP.OPEN
LLnon−native, LR, LRmother , Power, Phoneme recog(Del.) 0.851 0.804 0.910 0.851 0.927 0.864
Word recog(EURO, Cor.), LR, Power, Word recog(WSJ, Cor.) 0.815 0.770 0.902 0.866 0.929 0.884
Word recog(EURO, Cor.), LR, Power 0.814 0.771 0.893 0.858 0.918 0.887
LLbest, LRmother , Power 0.819 0.779 0.891 0.853 0.912 0.878
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We used the correct rate, substitution rate, and deletion rate for
arbitrary phoneme recognition. The test data are limited to the
correctly transcribed parts by man2/4, which means that two
teachers out of 4 transcribed the same label.

(g). Word recognition result
We used the correct rate for word recognition with a language
model. The WSJ database (WSJ) or Eurospeech’93 paper
(EURO) was used to train the bigram language models[11]. The
test data are limited to the correctly transcribed parts by man2/4.

(h). Standard deviation of powers and F0

The standard deviation of powers (Power) and fundamen-
tal(pitch) frequencies (F0) were calculated.

(i). Rate of speech
We used the rate of speech of the sentence. Silences in the ut-
terance were removed. We calculated each sentence’s ROS as
the number of phonemes divided by the duration in seconds.

3.2. Classification Methods
We used three classification methods for minimum phoneme
pairs. Two were discriminative models based on an SVM
and NN (Feed-forward Neural Network), respectively, while
the third was a generative model based on an HMM-based
method[16][17].

We chose 9 phoneme pairs for the evaluation of pronuncia-
tion ; l/r, m/n, s/sh, s/th, b/v, b/d, z/dh, z/d, and d/dh.

(a). HMM
The target phoneme in an utterance was extracted by a forced
Viterbi alignment based on HMMs. Then, the extracted part is

Table 4: Correlation between phoneme pair classification rate
and pronunciation score (20 Japanese speakers)

Correlation intonation rhythm segmental
SVM 0.693 0.514 0.605
NN 0.734 0.471 0.567

HMM 0.508 0.418 0.124

classified into the target phoneme or the rival phoneme by the
likelihood HMM, calculated on a by frame-by-frame basis.

(b). SVM/NN
Five successive frames in the center of the extracted part were
used as the input pattern for an SVM or NN classifier.

4. Estimating Pronunciation score
4.1. Statistical Method for Acoustic Measures
Table 2 summarizes the correlation between each acoustic mea-
sure and the learner’s pronunciation score which was scored by
native English teachers. Fairly high correlations were obtained
for most of the acoustic feature measures (e.g. LLnon−native,
LR, LRmother , LRadap, ROS).

A linear regression model derived from the relationship be-
tween the acoustic measures and the learner’s scores was pro-
posed for estimating the pronunciation score. We established
various independent variables {xi} as parameters and the value
Y as the learner’s score, and defined the linear regression model
as Y = Σiαi × xi + ε, (1)
where ε is a residual [9][10]. The coefficients {αi} were deter-
mined by minimizing the square of ε. We experimented with
both closed and open data for the speakers. Next, we investi-
gated whether or not our proposed method was independent of
the speaker. For the open experiment on speakers, we estimated
the regression model using utterances from 20 speakers and es-
timated the score of the remaining speakers. We repeated this
experiment for every speaker.

Table 3 summarizes the results of the pronunciation score
for closed and open data at 1, 5, and 10 sentence levels. By
combining certain acoustic measures, we obtained a correlation
coefficient of 0.887 for pronunciation scores using open data at
the 10 sentence level.

This confirms that the outcome of the proposed automatic
estimation method for pronunciation score is almost the same
as the evaluation by English teachers.

4.2. Classification Method by HMM, SVM, and NN
Figures 2 and 3 illustrate the classification rates of minimum
phoneme pairs by HMM, SVM, and NN. According to Figure
2, the average classification rates are about 95% by SVM, 94%
by NN, and 82% by HMM for 8 native speakers. From Figure
3, it can be seen that the average classification rates by SVM are
about 95% for 8 native speakers and about 83% for 25 Japanese

Table 3: Correlation between combination of acoustic measures and learner’s pronunciation score by human raters
Number of sentences for evaluation 1 sentence 5 sentences 10 sentences

Acoustic measures CLOSED SP.OPEN CLOSED SP.OPEN CLOSED SP.OPEN
LLnon−native, LR, LRmother , Power, Phoneme recog(Del.) 0.851 0.804 0.910 0.851 0.927 0.864
Word recog(EURO, Cor.), LR, Power, Word recog(WSJ, Cor.) 0.815 0.770 0.902 0.866 0.929 0.884
Word recog(EURO, Cor.), LR, Power 0.814 0.771 0.893 0.858 0.918 0.887
LLbest, LRmother , Power 0.819 0.779 0.891 0.853 0.912 0.878
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Word stress detection
• Modeling of (un)stressed syllables [Minematsu+’97][Imoto+’02]

• HMM-based modeling of syllables (C..CVC..C)
• Syllable structure dependent (V, C..CV, VC..C, and C..CVC..C)
• Vowel type dependent (short vowels, long vowels, and diphthongs)
• Vowel position dependent (head, tail and other in a word)
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Manner of word stress generation
• Estimation of pron. habit in word stress generation [Minematsu+’00]

• Word accent in Japanese : pitch accent
• Fundamental frequency (F0)

• Word accent in English : stress accent
• Four multiple factors of F0, duration, power, and vowel quality
• Japanese tend to produce English word stress mainly by pitch change [Shibuya’96].

• Stress / unstress identification using multiple weights
•    
• The optimal weights represent the pronunciation habit of individual students.
• Larger         is observed in word stress generation by Japanese?
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Figure 4: Integration of the 41 triangles into the represen-
tative pattern

representative triangle is calculated as

S(ρ1, ρ2, ρ3) =
∑

φ

w(φ)s(ρ1, ρ2, ρ3, φ), (5)

where s(ρ1, ρ2, ρ3, φ) means the detection rate at weight
(ρ1, ρ2, ρ3, φ). Figure 5 shows an example of the rep-
resentative pattern. Here, a shade of colors of the
circles corresponds to the height of the detection rate.
Darker and lighter circles indicate higher and lower
rates respectively. Numbers in the circles are the ex-
pected detection rates. Two double circles indicate the
maximum and the minimum of the expected detection
rates, henceforth the maximum/minimum circle. Two
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sets of three single circles mean the maximum and
the minimum of the average of the expected detection
rates over the neighboring three circles, henceforth the
maximum/minimum neighboring circles.

The triangular representation can show a learner the
(un)balance of his/her controlling vowel quality, power,
and F0, and that without any presenting acoustic ob-
servations immediately. In some CALL softwares, the
acoustic observations such as speech waveforms, F0

curves, power curves, and spectrum patterns are sep-
arately provided with learners. However, most of the
learners are easily supposed to be unfamiliar with the
above immediate representation of the acoustic obser-
vations. Therefore, the immediate visualization may
have only small effects on pronunciation learning. Even
if the learners have enough knowledge on the observa-
tions, the immediate visualization must be of little use
when the acoustic features are separately presented to
the learners. This is because the word stress of En-
glish is generated by adequately controlling the mul-
tiple acoustic factors simultaneously, in other words,
adequately balancing the multiple factors. As men-
tioned above, the triangular representation shows the
learner’s manner of the control based upon the ab-
stract representation of the acoustic observations and
the integrated representation of the multiple factors.
Hence, the effectiveness of using this representation is
expected to be extremely high.

5. ASSESSMENT OF THE
PROPOSED METHOD

5.1. Procedures of the Assessment Experiments

English word samples spoken by seven Japanese learn-
ers with various levels of English pronunciation profi-
ciency were prepared. They are listed as J in Table 2.
By using these samples, the pronunciation proficiency
of the individual learners was firstly rated by four En-
glish teachers. After that, the representative trian-
gle was automatically generated separately for each
learner. And the representative triangle was also made
for each native speaker of A. The assessment of the
proposed method was conducted based upon two com-
parisons. One is the comparison between the represen-
tative triangles of the Japanese learners and those of
the native speakers and the other is that between the
triangles of the Japanese learners and the pronuncia-
tion proficiency of the learners rated by the English
teachers. In other words, the first comparison ex-
amines whether the proposed method can detect the
differences of the accent generation manner between
Japanese learners and native speakers. And the sec-
ond one investigates whether the method can detect
the differences among Japanese learners.

5.2. Rating of the English Pronunciation Profi-
ciency of Japanese Learners

The rating of the English pronunciation proficiency
was done by four English teachers using a five-degree
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sets of three single circles mean the maximum and
the minimum of the average of the expected detection
rates over the neighboring three circles, henceforth the
maximum/minimum neighboring circles.

The triangular representation can show a learner the
(un)balance of his/her controlling vowel quality, power,
and F0, and that without any presenting acoustic ob-
servations immediately. In some CALL softwares, the
acoustic observations such as speech waveforms, F0

curves, power curves, and spectrum patterns are sep-
arately provided with learners. However, most of the
learners are easily supposed to be unfamiliar with the
above immediate representation of the acoustic obser-
vations. Therefore, the immediate visualization may
have only small effects on pronunciation learning. Even
if the learners have enough knowledge on the observa-
tions, the immediate visualization must be of little use
when the acoustic features are separately presented to
the learners. This is because the word stress of En-
glish is generated by adequately controlling the mul-
tiple acoustic factors simultaneously, in other words,
adequately balancing the multiple factors. As men-
tioned above, the triangular representation shows the
learner’s manner of the control based upon the ab-
stract representation of the acoustic observations and
the integrated representation of the multiple factors.
Hence, the effectiveness of using this representation is
expected to be extremely high.

5. ASSESSMENT OF THE
PROPOSED METHOD

5.1. Procedures of the Assessment Experiments

English word samples spoken by seven Japanese learn-
ers with various levels of English pronunciation profi-
ciency were prepared. They are listed as J in Table 2.
By using these samples, the pronunciation proficiency
of the individual learners was firstly rated by four En-
glish teachers. After that, the representative trian-
gle was automatically generated separately for each
learner. And the representative triangle was also made
for each native speaker of A. The assessment of the
proposed method was conducted based upon two com-
parisons. One is the comparison between the represen-
tative triangles of the Japanese learners and those of
the native speakers and the other is that between the
triangles of the Japanese learners and the pronuncia-
tion proficiency of the learners rated by the English
teachers. In other words, the first comparison ex-
amines whether the proposed method can detect the
differences of the accent generation manner between
Japanese learners and native speakers. And the sec-
ond one investigates whether the method can detect
the differences among Japanese learners.

5.2. Rating of the English Pronunciation Profi-
ciency of Japanese Learners

The rating of the English pronunciation proficiency
was done by four English teachers using a five-degree
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to a learner's pronunciation habit
(ρ1, ρ2, ρ3, φ) = (cep, pow, pit, dur) = ?
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Figure 2: Adaptation of a computer’s ear to a learner’s
own pronunciation habit

pitch weight is expected to improve the detection rate
with English words spoken Japanese, that of the power
weight and the vowel quality weight is thought to do
with words spoken by native speakers.

3.2. Estimation of the Pronunciation Habits

The estimation of the optimal weight was intention-
ally carried out by using a greedy strategy. The rea-
son for that will be described in Section 4.. Here, out
of a pre-defined set of combinations, the combination
giving the highest performance was obtained by cal-
culating the detection rate for each combination. The
pre-defined set is as follows.
• A weight for duration, φ, was changed from 0.0 to

20.0 with a step of 0.5. Then, φ had 41 varieties.
• For each value of φ, weights for the other parame-

ters, ρs, were set to be one of the following 28 com-
binations, where

∑

ρs = 3.0 and ρs ≥ 0.

(ρ1, ρ2, ρ3) =























































(1.0, 1.0, 1.0),
(1.5, 0.5, 1.0), (1.5, 1.0, 0.5), (0.5, 1.5, 1.0),
(1.0, 1.5, 0.5), (0.5, 1.0, 1.5), (1.0, 0.5, 1.5),
(0.0, 1.5, 1.5), (1.5, 0.0, 1.5), (1.5, 1.5, 0.0),
(2.0, 0.0, 1.0), (2.0, 1.0, 0.0), (0.0, 2.0, 1.0),
(1.0, 2.0, 0.0), (0.0, 1.0, 2.0), (1.0, 0.0, 2.0),
(2.0, 0.5, 0.5), (0.5, 2.0, 0.5), (0.5, 0.5, 2.0),
(2.5, 0.0, 0.5), (2.5, 0.5, 0.0), (0.0, 2.5, 0.5),
(0.5, 2.5, 0.0), (0.0, 0.5, 2.5), (0.5, 0.0, 2.5),
(3.0, 0.0, 0.0), (0.0, 3.0, 0.0), (0.0, 0.0, 3.0).

(4)

Consequently, an input word was matched with a con-
catenation of the (un)stressed syllable HMMs with
41×28=1148 varieties of the stream weight combina-
tions. And the combination giving the highest detec-
tion rate for several dozens of word utterances should
be obtained as the pronunciation habit of the learner.

4. VISUALIZATION OF THE
ESTIMATED HABITS

4.1. Preliminary Discussions on Visualization

In the previous section, the pronunciation habit was
defined as the optimal weight combination in the weight
space. However, the detection rates with non-optimal
weight combinations can also be of great help to pro-
vide a learner with instructions on his/her pronunci-
ation habit. For example, the following issues can be

dealt with only by considering the entire distribution
of the detection rate in the weight space; 1) the weight
combinations showing the comparable performance to
that of the optimal point can be given to learners,
2) the point corresponding to the lowest performance
can also be considered to be one of the aspects of the
learner’s pronunciation habit, and 3) when using the
optimal point only, it is impossible to examine how
valid the location of the learner’s optimal point is in
the native speakers’ weight space. Those are why the
authors did a greedy method, where the weight space
were quantized adequately and the detection rate of
each point or centroid was calculated greedily. In the
following section, a method of visualizing the entire
distribution of the detection rate is devised.

4.2. Visualization of the Estimated Habits

The complete visualization of the estimated habit re-
quires a method of representing the entire distribution
of the detection rate in the space of four weights, φ and
{ρs}. And this task is surely very difficult to do on
a two-dimensional plane. In this section, for the fol-
lowing two reasons, the visualization of the relation
between the detection rates and {ρs}, i.e. weights for
cepstrum, power, and F0, is focused upon.
• Weighting operations are done differently between

duration and the other three parameters, which are
shown in Equation (3).

• Unlike cepstrum, power, and F0 parameters, dura-
tion for a state is used in the HMM without any
normalization.

As shown in Equation (2), the above three weights are
satisfying a condition

∑

ρs = 3.0 (ρs ≥ 0). There-
fore, 28 combinations in Equation (4) can be plotted
on one plane, which is shown in Figure 3. And by
representing the detection rate of each dot (weight)
using different colors, the visualization of the relation
between the detection rates and {ρs} under a specific
value of φ can be realized. This representation will be
called triangular representation in the rest of the pa-
per. Although the triangular representation enables
learners to know the pronunciation habit visually, it
provides them with a triangle per duration weight,
namely, 41 triangles all together. Then, a method
of integrating the 41 triangles into one representative
pattern is required. Since the triangular representa-
tion currently deals with the other three parameters
than duration, the integration of the 41 triangles can
be done by calculating an expectation pattern of the
triangles along an axis of duration. And this inte-
gration is shown in Figure 4. Firstly, the averaged
detection rate on a triangle of φ = Φ is calculated
as d(Φ). Secondly, a weighting factor assigned to the
φ = Φ triangle for the expectation operation is de-
fined as w(Φ) = d(Φ)/

∑

φ d(φ). Finally using these
weights, the representative pattern of the 41 triangles
is produced by the expectation operation along an axis
of duration. Here, detection rate S(ρ1, ρ2, ρ3) on the
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Manner of word stress generation
• Results of pronunciation habit estimation [Minematsu+’00]

• Four examples of estimation results: two natives and two Japanese

• Locations of the optimal weights of 7 natives and 6 Japanese students
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Tone error detection using DT
• Use of a decision tree to detect tone errors [Liao+’10]

• A decision tree tells us “why and how the input tone pattern is bad”.
• This info. can be used as easy-to-understand feedback to students.

• 1 to 5 point human rating scores are converted into binary rating
• 1/2 = bad and 3/4/5 = good, which are used as labels for training decision trees.

• A syllable is divided into three segments and F0 mean is obtained from each.
• F0 differences bet. any segment pair are added to a feature vector.

training. Note that in Table 1, the number of bad tone 
productions is much smaller than the number of good ones. 
This is similar to the study by Peabody [10]. The reason could 
be that the annotators would only mark an error only when is a 
serious tonal error to be pointed out while student is learning 
Mandarin. Although such annotation policy would make the 
results more real, however it leads to a biased problem in 
model training. That might results in a high false rejection rate 
while detecting bad tone productions. In order to minimize the 
overall false rejection and false acceptance rates, an additional 
cost has to be applied on the biased class when training the 
decision tree. This is commonly seen in the optimization of 
classification problem [5], and will be discussed later. 

Table 2. Inter-rater correlation on syllable-level 
Rater ID 1 2 3 4 5 6 

1 1 0.72 0.75 0.78 0.56 0.8
2 0.72 1 0.7 0.68 0.62 0.73
3 0.75 0.7 1 0.7 0.56 0.72
4 0.78 0.68 0.7 1 0.53 0.77
5 0.56 0.62 0.56 0.53 1 0.62
6 0.8 0.73 0.72 0.77 0.62 1

3. Tree-Based Tone Assessment 
Comparing to other machine learning methods, decision tree 
can be easily interpreted by its attributes tested on each node 
with a simple Boolean logic. This advantage gives us a way to 
inspect resulted criteria of identifying bad tone productions 
after training with experts’ annotations. A block diagram of 
the proposed approach is shown in Figure 1. In the training 
phase we calculate the tone features based on the acoustic cues 
and tone labeling. Then we can build our tone models by using 
decision tree with the C4.5 algorithm [11] according to the 
annotated tone corpus and extracted tone features. Considering 
the human knowledge about tone production, a set of detailed 
comments can be associated with the constructed decision tree. 
Finally to assess a test utterance, the decision tree then can be 
traversed and the corresponding feedbacks can then be 
retrieved for the learners according to the traversed result. 

Figure 1: A decision tree based tone assessment system block 
diagram with training (upper) and testing (lower) subsystems.

3.1. Feature Extraction 
Mandarin tones are usually distinguished by the shape its pitch 
contour. Other characteristics, such as amplitude and duration, 
can also be utilized. We therefore use pitch information as the 
primary feature to distinguish bad from good tone productions. 

For extracting pitch information, we first use the RAPT 
algorithm [13] to extract F0. Then we use a 5-point moving 
average filter to smooth the pitch contour. Due to differences 
in the mean F0 of speakers, F0 has to be further normalized 
across speakers to make meaning comparisons. The process is 
based on a method commonly used for Mandarin tone studies 

[16,12], i.e., with x being the observed raw pitch value, it is 
normalized according to the following formula: 

1
MinlogMaxlog

Minloglog4)( !
"

"# xxp  (1) 

where Max and Min are the highest and lowest F0 over all the 
syllables of each speaker after smoothing. This will put F0 on 
a common 5-pt scale, which was originally proposed by [1]. 

After normalized into a 5-pt scale, Figure 2 shows the 
averaged pitch contours of the four tones labeled as good and 
bad. We can see that good and bad tone productions reveal 
significant different characteristics. For example, tone2 should 
be produced at a lower pitch register with a slope that 
becomes positive in the middle of the corresponding syllable. 
However, for bad tone productions we often observed a 
negative slope. 

Figure 2: Averaged pitch contours of good and bad tone 
productions.

Features were extracted using an algorithm originally used 
in tone recognition [3], with a slight modification. Firstly all 
the utterances were segmented into syllables via forced 
alignment of Viterbi decoding based on a speaker-independent 
speech recognition engine. 707 syllables were removed from 
the recognition phase since their syllable durations are less 
than 40 msec or more than 600 msec, which are considered to 
be erroneous cases in forced alignment. Furthermore, the well-
known tone sandhi rule applying to two consecutive tone3 
syllables was taken care of by a manual transcription. 

As shown in Figure 3, F0 of each syllable was equally 
divided into three segments. We then adopt the mean value of 
F0 of each segments and the differences between them as 
feature vectors of each syllable. This gives us a 6-dim feature 
vector for each segmented syllable. 

Figure 3: Illustration of feature vector extraction. 

3.2. Decision Tree 
Decision trees play a critical role in our proposed framework. 
In the classification phase the features representing pitch 
shape are tested at each node in a decision tree according to a 
pre-defined characteristic question about the tested segment. 
Then leaf nodes categorize each hypothesized syllable as good 
or bad tone production. On the other hand in the training and 
regression phase we select a sequence of questions to split the 
training samples into two parts at each node to effectively 
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training. Note that in Table 1, the number of bad tone 
productions is much smaller than the number of good ones. 
This is similar to the study by Peabody [10]. The reason could 
be that the annotators would only mark an error only when is a 
serious tonal error to be pointed out while student is learning 
Mandarin. Although such annotation policy would make the 
results more real, however it leads to a biased problem in 
model training. That might results in a high false rejection rate 
while detecting bad tone productions. In order to minimize the 
overall false rejection and false acceptance rates, an additional 
cost has to be applied on the biased class when training the 
decision tree. This is commonly seen in the optimization of 
classification problem [5], and will be discussed later. 
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3. Tree-Based Tone Assessment 
Comparing to other machine learning methods, decision tree 
can be easily interpreted by its attributes tested on each node 
with a simple Boolean logic. This advantage gives us a way to 
inspect resulted criteria of identifying bad tone productions 
after training with experts’ annotations. A block diagram of 
the proposed approach is shown in Figure 1. In the training 
phase we calculate the tone features based on the acoustic cues 
and tone labeling. Then we can build our tone models by using 
decision tree with the C4.5 algorithm [11] according to the 
annotated tone corpus and extracted tone features. Considering 
the human knowledge about tone production, a set of detailed 
comments can be associated with the constructed decision tree. 
Finally to assess a test utterance, the decision tree then can be 
traversed and the corresponding feedbacks can then be 
retrieved for the learners according to the traversed result. 

Figure 1: A decision tree based tone assessment system block 
diagram with training (upper) and testing (lower) subsystems.

3.1. Feature Extraction 
Mandarin tones are usually distinguished by the shape its pitch 
contour. Other characteristics, such as amplitude and duration, 
can also be utilized. We therefore use pitch information as the 
primary feature to distinguish bad from good tone productions. 

For extracting pitch information, we first use the RAPT 
algorithm [13] to extract F0. Then we use a 5-point moving 
average filter to smooth the pitch contour. Due to differences 
in the mean F0 of speakers, F0 has to be further normalized 
across speakers to make meaning comparisons. The process is 
based on a method commonly used for Mandarin tone studies 

[16,12], i.e., with x being the observed raw pitch value, it is 
normalized according to the following formula: 
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where Max and Min are the highest and lowest F0 over all the 
syllables of each speaker after smoothing. This will put F0 on 
a common 5-pt scale, which was originally proposed by [1]. 

After normalized into a 5-pt scale, Figure 2 shows the 
averaged pitch contours of the four tones labeled as good and 
bad. We can see that good and bad tone productions reveal 
significant different characteristics. For example, tone2 should 
be produced at a lower pitch register with a slope that 
becomes positive in the middle of the corresponding syllable. 
However, for bad tone productions we often observed a 
negative slope. 

Figure 2: Averaged pitch contours of good and bad tone 
productions.

Features were extracted using an algorithm originally used 
in tone recognition [3], with a slight modification. Firstly all 
the utterances were segmented into syllables via forced 
alignment of Viterbi decoding based on a speaker-independent 
speech recognition engine. 707 syllables were removed from 
the recognition phase since their syllable durations are less 
than 40 msec or more than 600 msec, which are considered to 
be erroneous cases in forced alignment. Furthermore, the well-
known tone sandhi rule applying to two consecutive tone3 
syllables was taken care of by a manual transcription. 

As shown in Figure 3, F0 of each syllable was equally 
divided into three segments. We then adopt the mean value of 
F0 of each segments and the differences between them as 
feature vectors of each syllable. This gives us a 6-dim feature 
vector for each segmented syllable. 

Figure 3: Illustration of feature vector extraction. 

3.2. Decision Tree 
Decision trees play a critical role in our proposed framework. 
In the classification phase the features representing pitch 
shape are tested at each node in a decision tree according to a 
pre-defined characteristic question about the tested segment. 
Then leaf nodes categorize each hypothesized syllable as good 
or bad tone production. On the other hand in the training and 
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diff3

diff2

mean1
mean2

mean3
diff1=mean2-mean1
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Tone error detection using DT
• Use of a decision tree to detect tone errors [Liao+’10]

• Right-context-dependent models are adopted.
• A set of questions prepared in terms of F0mean and F0diff.
• Approx. 90% of correct binary judgment (good or bad) for testing data.
• Potential use of traversed paths for feedback generation

minimize classification errors for training attributes. In this 
work, we used the C4.5 algorithm [11] for our decision tree 
training. It chooses an attribute with the highest normalized 
information gain to split its set of samples into subsets. It is a 
well-known algorithm in data mining and was proven to be 
effective on various classification problems.

However, since our annotations were extremely biased, 
C4.5 cannot minimize the false acceptance and false rejection 
rates at the same time. To overcome this problem, we need to 
assign different costs to different errors. A method called 
MetaCost [5] can be utilized to help us turn C4.5 into a cost-
sensitive tool and the different cost setting would result in 
different error rates. For example, as shown in Figure 4, the 
amount of class B is increased after the tuned cost matrix is 
applied on the feature re-classification. The re-labeled features 
are then used to re-estimate the model parameter, therefore an 
improved model can be achieved for the biased data. We will 
discuss this issue in detail in the Experimental Results Section. 

Figure 4: The concept of the MetaCost approach.

3.3. Feedback Labeling 
After building tone models with decision tree training, we can 
inspect the attributes of each leaf node which classifies a 
syllable as a bad tone production. As shown in Figure 5, Path1, 
in solid arrow sequences, represents a bad tone2 production. 
According to the criteria on the traversed path, we can see 
samples classified to this leaf node have problems of an 
extraordinary high pitch level at the beginning and a negative 
slope during tone production. Therefore, we can potentially 
give corrective feedbacks, such as “you can lower your pitch 
in the beginning” or “you can raise your pitch gradually” on 
the associated nodes of Path1. By utilizing such advantage of 
the decision tree, we can further exam each node about the 
criterion used to split the node and then add some instructions 
for the learners about how to correct the error. Moreover, we 
can also summarize such errors in a systematic manner for 
each learner to make overall adjustments in tone production. 

Figure 5: Illustration of a path of a bad tone2 production.

4. Experimental Results 
To prepare for decision tree training, we divide the feature 
vectors into several right-context dependent (RCD) categories. 
Two RCD tones are different if their immediate right tones are 
different. For example, tone1 before tone2 in a word is defined 
as “tone1+tone2” in the RCD context, which is still a type of 
tone1. The number of RCD tone models is much larger than 

that of the context-independent tone models, thus a large 
corpus is required for reliable training of RCD tone models. 
For example, tone1 will have five models: model of 
tone1+tone1, tone1+tone2, tone1+tone3, tone1+tone4 and 
tone1+silence. Consequently, we have 20 RCD tone models in 
total. The whole training procedure was performed by using 
the NTNU corpus described in Section 2 and a well-known 
machine learning tool, Weka [17], to quickly build our tone 
models. A 10-fold cross validation is conducted to validate the 
performance. To target the effectiveness of tone assessment, 
the performance metric for model learning is defined as the 
summation of false rejection (FR) and false acceptance (FA) 
rates, which is consistent with the situation in pronunciation 
learning. To alleviate the data biased problem of tone 
modeling, a heuristic approach is experimented on tuning the 
cost weight of the biased class. Particularly in this experiment 
only the cost of the bad tone class is tuned, which is absolutely 
minor class compared with the good tone class.

As shown in Figure 6, considering all RCD tone models 
context-independently, equal weighting leads to poor 
performance when the cost equals 1, and in average 30% to 
65% error reduction could be achieved for four tone models 
when the cost is increased for bad tone data. 
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Figure 6: The performance result when the cost parameter is 
heuristically tested for the minor data of bad tone. 

Moreover, to verify the reliability of tone modeling for good 
and bad tone productions, the detailed results of 20 RCD tone 
models are listed in Table 3. Instead of using the FA+FR, in 
Table 3 the good-bad binary classification rate is used, where 
the decision result is considered to be correct if it is consistent 
with the annotated result of human expert. In summary tone 
modeling of decision trees shows consistent results when 
considering the production difficulties of the four tones. In 
particular, tone3 shows a relatively low accuracy rate, which 
is taken as the result of highly variable pitch contour so that 
the overall characteristics could not be modeled correctly. The 
set of results in Table 3 demonstrates the reliability of RCD 
tone recognition, which is comparable when compared with 
related studies (e.g, [14]). 

Table 3. Assessment result of 20 RCD tone models in the 
NTNU corpus. 

  tone1 tone2 tone3 tone4 
*+tone1 95.81 81.61 87.25 92.34 
*+tone2 92.42 87.33 85.60 94.40 
*+tone3 91.94 92.02 70.49 92.18 
*+tone4 93.27 83.50 88.03 89.50 
*+sil 95.83 93.78 85.78 91.37 
Average 94.26 89.54 85.46 91.34 

mean2 < 2.99 

good 

bad

diff2 < - diff2 >= -

mean1 < 3.87 mean1 >= 3.87 

mean2 >= 2.99 

Path1
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5. Discussion
In this study, we focus on the corrective feedback mechanism 
offered in the proposed decision tree based tone assessment 
framework. The traversed path and nodes of the decision tree 
are regarded to be an important cue to hint the category of 
tone production type, as described in Section 3.3. Moreover, a 
comparison between two paths can be provided to learners. 
For example, two traversed paths for tone2, identified in solid 
Path1 and bold Path2, are shown in Figure 7. In the first tone 
production, four kinds of error type can be found on Path1, 
and one or more feedbacks can be generated accordingly. For 
instance, “the tail of tone2 is not raised enough” (according to 
the feature “dif2<-0.07”) or “the leading head of tone2 is a 
little too-high” (according to the question “mean1>=3.87”) are 
both reasonable. Furthermore, after the second production of 
tone2, the comparison between Path1 and Path2 can easily be 
made. For instance, “you improved the mistake that the raising 
degree of tone2 is not enough” (according to “diff3<-0.61”) or 
“you made a new mistake that the average pitch of tone2 is too 
low” or the combination of both comments are all possible.

In other words, even two tone productions are both 
classified into the ‘bad’ category, somehow the reason behind 
such mistakes are different. By using the decision tree, the 
difference of the two potential paths prompts some corrective 
suggestions, such as the unchanged errors, the new errors and 
the improved errors. Therefore our system can easily provide 
the feedback for one tone particular production or even for the 
comparison between any two productions.  

Conventionally, the rule-based descriptions about tone 
modeling, such like [1], is too primitive when compared with 
the modern statistical approaches. However for tone 
assessment, simple rules seem to be more practically useful 
when specific feedbacks are required to correct wrong 
production of tones. The constructed decision tree organizes 
the rules considering the statistical C4.5 algorithm and the 
annotated tone corpus. It is therefore beneficial to the 
qualitative and quantitative characterization of detecting 
problematic tone productions. 

Figure 7: Illustration of relative comparison of two bad tone2 
productions.

6. Conclusions
In this paper, a decision tree based tone assessment framework 
is proposed. It also provides corrective feedbacks to the user. 
By using the path traversed in the decision tree, our system 
recommends descriptive correction for tone production. 
Furthermore, based on the decision tree, the assessment 
system can reduce the large amount of human labor when 
compared with the preparation of course material in the 

traditional template-based CAPT systems. Finally, the 
proposed approach is highly flexible, which is not only works 
well for tone assessment, but also applicable to other kinds of 
assessment like pronunciation, prosody, duration and energy 
contours when learning many different kind of languages. In 
the immediately future work, the pedagogical and practical 
evaluation would be conducted with the education researcher 
in order to prove the effectiveness of the approach. 
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Utterance-based prosodic comparison
• Consideration of characteristics of Japanese English

• Word-by-word pronunciation [Sugito’98]
• Too many or too few peak-and-valleys in intonation [Shimizu’95]

• Prosodic comparison between utterances [Yamashita+’05]
• Multiple units such as word, word boundary, prosodic phrase, and sentence
• Each unit is determined by phoneme labels obtained from an HMM aligner.
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• Prosodic comparison between utterances [Yamashita+’05]
• F0 contour, power contour, total duration, word duration, pause duration
• Deviation of an observed contour from its 1-st or 2-nd order approximation.

• Very low deviation expects that the contour is flat.

• Linear regression of these prosodic scores to predict human scores.
• The correlation bet. machine and human is not high.

Utterance-based prosodic comparison
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Prosodic comparison with DTW
• Prosodic assessment with word importance factors [Suzuki+’08]

• Word segmentation is done by forced alignment using an ASR engine.
• Word-based prosodic comparison between a student and a teacher

• Ratio of word-based durations, DTW of stress patterns (log energy contour) and 
DTW of intonation patterns (F0 + log energy contour)

• Word class importance factor is introduced to improve the performance.
• A sentence score is obtained as linear combination of the word-based scores.
• Different words should have different contributions to the final prosodic assessment.
• DTs are trained so that linear regression errors should be minimized.

• Leaf-node-dependent linear regressions are used.

should be calculated by summing these word scores.
However, native speakers appear to evaluate a learner’s
prosody by focusing on several keywords. In order to em-
ulate such an evaluation strategy, the word importance
factor is introduced, and the sentence score is calculated
as a weighted sum of the word scores.

Let αij be the word importance factor of the j-th word
of the i-th sample uttered by a learner. This factor is
estimated by the ordinary least squares method. The error
Q is defined as follows:

Q =
∑

i

(
1

Ki

Ki∑

j=1

αijxi(j) + β − ei

)2

(12)

where xi(j) denotes the prosody score (xrh(j) or yint(j))
of the i-th sample, Ki denotes the number of words in the
i-th sample, and ei denotes the prosodic score (rhythm
score or intonation score) given by native speakers. The
ordinary least squares method can estimate α and β with
minimum Q. After estimation, the sentence score Si can
be calculated using estimated values of α and β, as follows:

Si =
1

Ki

Ki∑

j=1

αijxi(j) + β (13)

The word importance factor αij should be estimated
separately for each sample and word. However, it is very
difficult to estimate robustly because there are few samples
for estimation. In order to solve this problem, the word
importance factor is clustered using a decision tree.

Clustering of the word importance factor
One reasonable way to estimate α robustly is based on α,
which is commonly used for each vocabulary. For instance,
αthe is estimated using the word “the” in all samples. In
this method, many samples can be used for the estimation
of α. However, α cannot represent the difference of posi-
tion in a sentence or the sentence style (such as a declar-
ative sentence or a question).

In order to estimate α more robustly and flexibly, a
decision tree clustering algorithm is introduced. Figure 3
shows an example of a decision tree. In this algorithm,
a number of questions regarding the nature of words are
prepared in advance, and a word cluster is divided into
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Figure 3: Example of a decision tree.

two clusters using appropriate questions. The question
with highest correlation coefficient between scores given by
native speakers and that given by the system is selected
as the appropriate question.

The details of the algorithm are as follows:

Step 1 Make a root node L0 in the tree. All of the words
in the training samples are included in the root node.

Step 2 Select the node Li that has greatest number of
words.

Step 3 Step 4 and Step 5 are carried out for all of the
questions Q1 · · ·QM .

Step 4 Divide the words in node Li into two new nodes
Lyes and Lno using question Qj . If the number of
words in node Lyes or node Lno is less than a pre-
defined threshold θ, cancel the division using Qj .

Step 5 Estimate α using the ordinary least squares
method. All of the words in the same node use the
same α. After estimation, the correlation coefficient
r(Qj) between scores given by native speakers and
the system is calculated.

Step 6 Select the question Q̂ with the highest r(Q̂), and
divide the node Li into two new nodes using the ques-
tion Q̂. If none of the questions can be used because
the number of words in the new node is smaller than
θ, exit this algorithm. Otherwise, go to Step 2.

Appropriate clusters can be acquired using this algorithm,
and the number of nodes can be controlled by θ.

6. EXPERIMENTS

Experimental conditions
Several experiments were carried out in order to confirm
the effectiveness of the proposed system. An English
speech database read by Japanese students [11] was used
as the learners’ speech. All of the data were evaluated
with respect to both rhythm and intonation by four native
speakers. A total of 68 questions (examples are shown in
Table 2) were prepared for decision tree clustering, and a
4-fold cross validation technique was used for an open test.
Shirokaze’s method [12] was used for extracting pitch. The
other experimental conditions are shown in Table 1.

Evaluation of rhythm
First, the correlation between the scores given by four eval-
uators is checked. Table 3 shows the correlations between
the evaluators. In this table, “mean” denotes the correla-
tion between a score given by an evaluator and the average
score calculated from three other scores. This table indi-
cates that scores given by evaluators varied widely. The
maximum correlation between evaluators was 0.57, and the
correlation between an evaluator and the average score was
slightly high. In the experiments, the average score was
used as the scores given by native speakers.

Table 4 shows the results of rhythm evaluation with sev-
eral prosodic features. We examined the proposed fea-
tures, the duration ratio of the word between the learner’s
speech and the teacher’s speech (A) and the DTW dis-
tance of the normalized log-power (B). Moreover, we also

Table 8: Results of intonation evaluation using inte-
gration of both scores

Intonation only Both scores
Closed 0.59 0.64
Open 0.45 0.48

poor intonation. Therefore, the rhythm score xrh is useful
for evaluating not only rhythm, but also intonation. The
intonation score yint is also useful for both evaluations.

In this section, we propose a new evaluation score that
is calculated using both xrh and yint.

Integration of two scores
The new evaluation score S̃i of the i-th sample is calculated
by the approach described in Section 5. The new score can
be defined as follows:

S̃i =
1

Ki

Ki∑

j=1

(
αijxrh,i(j) + βijyint,i(j) + γ

)
(14)

where xrh,i(j) and yint,i(j) denote the rhythm and into-
nation scores of the j-th word of the i-th sample, respec-
tively. αij , βij , and γ can be estimated by the ordinary
least squares method to minimize the following error func-
tion:

Q =
∑

i

{
1

Ki

Ki∑

j=1

(
αijxrh,i(j) + βijyint,i(j) + γ − ei

)
}2

(15)
The word importance factors αij and βij are also clustered
using the decision tree clustering.

Note that the new evaluation score S̃i is not used for
evaluating the total prosody, which means both rhythm
and intonation. When evaluating rhythm, rhythm scores
given by evaluators are used as ei in Eq. (15), and three
parameters (α, β, and γ) are estimated for rhythm eval-
uation. As a result, S̃i is used as the rhythm score. In
the same manner, if the intonation is to be evaluated, an-
other three parameters are estimated using the intonation
scores given by the evaluator, and S̃i is used as the into-
nation score.

Evaluation experiments
In order to investigate the effectiveness of the new score S̃i,
several experiments were carried out. The experimental
conditions are the same as those described in Section 6.

Table 8 shows the correlation coefficients between the
score given by the evaluators and the proposed score for
evaluating intonation. The integration of the rhythm score
and the intonation score improves the correlation coeffi-
cient from 0.45 to 0.48 in the open condition, which means
that the prosodic features corresponding to rhythm affect
the evaluation of intonation.

On the other hand, the integration method was not ef-
fective for rhythm evaluation. The correlation coefficient
was 0.51. However, the rhythm score gave a correlation
coefficient of −0.55 (shown in Table 4). The integration

method could not outperform the evaluation using only
the rhythm score.

8. CONCLUSION

A prosodic evaluation method for English has been devel-
oped. The proposed method evaluates the rhythm and in-
tonation of a learner’s speech. For rhythm evaluation, the
word duration ratio and normalized log-power were used
as prosodic features. The correlation coefficient between
scores given by native evaluators and that obtained by the
proposed method was −0.55.

For intonation evaluation, the normalized log-power,
pitch, and first-order regression coefficients of both fea-
tures were used, and the word importance factor was also
introduced. A decision tree was used for clustering of the
word importance factor in order to obtain a robust esti-
mation. The proposed method gave a correlation coeffi-
cient of 0.45. Moreover, we also proposed a method by
which to integrate the rhythm score with the intonation
score in order to introduce the effectiveness of a prosodic
feature corresponding to rhythm to the intonation evalua-
tion. This provided a correlation coefficient of 0.48, which
is a higher correlation coefficient than that given by the
intonation score alone.

Both the results of rhythm and intonation evaluation
are statistically significant compared with the results of
the conventional method.
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Prosodic comparison w/o DTW
• Word-based modeling of F0 and energy contours [Cheng’11]

• 25-point resampling of prosodic patterns for each word
• Each word has three templates for each of F0 and energy contours.
• Euclidean distance is used to quantify a difference between a student pattern 

and a model pattern.

Figure 1: A typical clustering result. In this example, the word “strategy” appeared in a reading passage in a fixed position. The x-axis
is 25 equivalent distance points. The y-axis is normalized z-scores. The first column shows graphs of F0 (top) and energy (bottom) for
all the samples with high human prosody ratings. The other three columns are the three final clustered results. The heavy lines are the
averages that are used for the final models.

phoneme duration without context was used. Given a sequence
of phonemes in a recognized response pi, i = 1...N , and their
corresponding durations Di, the log likelihood segmental prob-
ability for phonemes (log seg prob) was computed as:

log seg prob =
1

N � 2

N�1X

i=2

log(Pr(Di)), (1)

where Pr(Di) was the probability that a native would pro-
duce phoneme pi with the observed duration Di in the context
found. The first and last phonemes in the response were not
used for the calculation of the log seg prob because durations
of these phonemes as determined by the ASR were more likely
to be incorrect.

The log likelihood segmental probability for inter-word
silence durations, iw log seg prob, was calculated the same
way, i.e. given a sequence of inter-word silences si, i = 1...M ,
and their durations Di:

iw log seg prob =
1
M

MX

i=1

log(Pr(Di)), (2)

where Pr(Di) was the probability that a native would pro-
duce inter-word silence si with the observed duration Di.

The duration models used here were very general. Differ-
ent from the F0 and energy models that were trained using the
combined development and training data, no data from the PTE
Academic was used to train the duration models.

4. Experiments and Results
Experimental Data Recordings of read-aloud passages from
PTE Academic’s field test data were used. The average num-
ber of words per passage was about 50. The sample rate for the
recordings was 8 kHz with 8 bits (telephone band). Every re-
sponse recording was rated by two different human raters. Hu-
man raters identified responses that had silence, fewer than half
the expected words, or irrelevant or completely unintelligible
material. These responses were excluded from our study. For
valid responses, human raters rated the response recordings on a
5-point scale, with 5 representing the best prosody rating (con-
sistent with previous research). The raters were asked to focus
not only on the naturalness of prosody, but also on the degree to
which the test-taker showed “comprehension of the text”. This
meant that raters sometimes accepted pitch contours that were
not “native-like”, as long as the phrasing and pausing were ap-
propriate and stress was placed on the appropriate words. We
also noticed that human raters gave low prosody ratings to cer-
tain native subjects because they read monotonously. Instead
of using only native data as the reference [5, 6, 7], we selected
responses with high prosody ratings regardless of whether the
responses were from native or non-native speakers. Our goal
was to cover all good prosody patterns for each passage. The
reason for collecting native data was to guarantee that we had
enough responses per item with high prosody ratings. All of the
trained human raters had a master’s degree in language-related
fields and resided in the US or UK.

For training and development purposes, 80 non-native re-
sponses and 15 native responses were collected from different
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Figure 1: A typical clustering result. In this example, the word “strategy” appeared in a reading passage in a fixed position. The x-axis
is 25 equivalent distance points. The y-axis is normalized z-scores. The first column shows graphs of F0 (top) and energy (bottom) for
all the samples with high human prosody ratings. The other three columns are the three final clustered results. The heavy lines are the
averages that are used for the final models.

phoneme duration without context was used. Given a sequence
of phonemes in a recognized response pi, i = 1...N , and their
corresponding durations Di, the log likelihood segmental prob-
ability for phonemes (log seg prob) was computed as:

log seg prob =
1

N � 2

N�1X

i=2

log(Pr(Di)), (1)

where Pr(Di) was the probability that a native would pro-
duce phoneme pi with the observed duration Di in the context
found. The first and last phonemes in the response were not
used for the calculation of the log seg prob because durations
of these phonemes as determined by the ASR were more likely
to be incorrect.

The log likelihood segmental probability for inter-word
silence durations, iw log seg prob, was calculated the same
way, i.e. given a sequence of inter-word silences si, i = 1...M ,
and their durations Di:

iw log seg prob =
1
M

MX

i=1

log(Pr(Di)), (2)

where Pr(Di) was the probability that a native would pro-
duce inter-word silence si with the observed duration Di.

The duration models used here were very general. Differ-
ent from the F0 and energy models that were trained using the
combined development and training data, no data from the PTE
Academic was used to train the duration models.

4. Experiments and Results
Experimental Data Recordings of read-aloud passages from
PTE Academic’s field test data were used. The average num-
ber of words per passage was about 50. The sample rate for the
recordings was 8 kHz with 8 bits (telephone band). Every re-
sponse recording was rated by two different human raters. Hu-
man raters identified responses that had silence, fewer than half
the expected words, or irrelevant or completely unintelligible
material. These responses were excluded from our study. For
valid responses, human raters rated the response recordings on a
5-point scale, with 5 representing the best prosody rating (con-
sistent with previous research). The raters were asked to focus
not only on the naturalness of prosody, but also on the degree to
which the test-taker showed “comprehension of the text”. This
meant that raters sometimes accepted pitch contours that were
not “native-like”, as long as the phrasing and pausing were ap-
propriate and stress was placed on the appropriate words. We
also noticed that human raters gave low prosody ratings to cer-
tain native subjects because they read monotonously. Instead
of using only native data as the reference [5, 6, 7], we selected
responses with high prosody ratings regardless of whether the
responses were from native or non-native speakers. Our goal
was to cover all good prosody patterns for each passage. The
reason for collecting native data was to guarantee that we had
enough responses per item with high prosody ratings. All of the
trained human raters had a master’s degree in language-related
fields and resided in the US or UK.

For training and development purposes, 80 non-native re-
sponses and 15 native responses were collected from different
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Prosodic comparison w/o DTW
• Phoneme duration and inter-word silence duration [Cheng’11]

• Phoneme duration likelihood, similar to [Franco+’00]

•   

• Inter-word silence duration likelihood

•   

• Linear regression of F0, energy, and duration scores to predict human scores

subjects for every passage. 340 valid responses from the non-
native data were randomly selected as the development set, four
responses per passage. The remaining valid responses made
up the training set. All the final parameters used for validation
were tuned on the development set, such as the fixed low value
(-4.5) for unviced segments was tuned using this set. For the
validation set, 158 subjects were randomly selected, for a total
of 357 valid responses. Every response in the validation set was
rated by four human raters.

New Approach for Unvoiced Segments Three methods
were explored to handle F0 of unvoiced segments: a). we inter-
polated all the unvoiced segments in the entire response record-
ing; b). we interpolated the unvoiced intra-word segments and
assigned a fixed low value to the other unvoiced segments; c).
we assigned a fixed low value to all unvoiced segments. Corre-
lations between machine-generated prosody scores and human
prosody ratings are presented in Table 1. The results show that
the new proposed method improved the predictive power of F0
significantly.

Method for handling unvoiced segments Correlation
a). All interpolated 0.29
b). Only intra-word segments interpolated 0.54
c). All assigned a fixed low value 0.57

Table 1: Correlations derived by using different methods to han-
dle F0 of unvoiced segments in the development set.

Validation Results Using the development set, a linear re-
gression model was built using all four prosodic features (F0
contours, energy contours, phoneme durations and silence du-
rations). We applied the linear regression model to the vali-
dation set and computed the correlation between the machine-
generated prosody score and the average human prosody rating.
Table 2 lists the correlations. For comparison, the average of
the inter-rater correlations for four selected raters who rated the
most in the validation set was 0.75.

Features Correlation
F0 0.67
Energy 0.67
F0 + Energy 0.73
iw log seg prob 0.54
log seg prob 0.76
Linear regression 0.80

Table 2: Correlations using different features.

From the table we can see, log seg prob based on the log
likelihood of the segmental duration probability for phonemes
was the best individual predictor. The F0 and energy features
had strong predictive power also. A simple average of F0 and
energy improved the correlation significantly. The final com-
bined model by using linear regression produced a correlation
coefficient (0.80) that was better than the human inter-rater cor-
relation (0.75).

5. Conclusions
Prosody consists of three basic components: fundamental fre-
quency, energy, and duration. We used “Read aloud” record-
ings as assessment materials and explored different methods for
predicting human prosody ratings in a real L2 high-stakes as-
sessment environment. A new method was proposed to han-

dle fundamental frequency of unvoiced segments that signifi-
cantly improved the predictive power of F0. We used the k-
means clustering method to build canonical contour models at
the word level for F0 and energy, which provided strong predic-
tors of prosody ratings. Combined with duration information at
the phoneme level, we built a linear regression model that pro-
duced machine-generated prosody scores that correlated highly
with human prosody ratings (r = 0.80). This correlation co-
efficient was even better than the correlation between human
raters (0.75). Our experimental results showed that while F0
and energy contours were strong predictors of prosody ratings,
duration information was the best predictive feature. The re-
sults support the use of the new methods for evaluating prosody
in high-stakes assessments.
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OUTLINE

• Introduction (TK)

• Segmental Aspect & Speech Recognition Tech. (TK)

•Pronunciation Structure Model (NM)

• Prosodic Aspect (NM)

• Speech Synthesis Tech. for CALL (NM)

• CALL System (TK)

• Database for CALL (NM)
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Text-to-speech technology
• Two main streams of TTS technology

• Unit-selection-based generation of waveforms
• Selection and concatenation of waveform templates

• HMM-based generation of waveforms 
• Cepstrum-vocoder based generation

• Comparison of the two frameworks
• The former tends to be higher in naturalness.
• The latter is higher in flexible control.

• Use of TTS technology for CALL [Handley+’05][Black’07]
• As model pronunciation

• Use of TTS in pronunciation training
• Required naturalness is extremely high.

• As reading machine
• Use of TTS in dictation practice, shadowing practice, etc
• Required naturalness is high.

• As dialogue partner in a dialogue-based CALL system
• Required naturalness is not so high.

  

Oxford-Hachette French Dictionary
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Some demos of high-quality TTS
• “Globalvoice English” produced by HOYA service corp., Japan

• http://voicetext.jp
• Used in dictation practice and shadowing practice in college English classes
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Use of re-synthesis technology
• STRAIGHT [Kawahara’06]

• High-quality analysis-resynthesis tool
• Decomposition of speech into

• Fundamental frequency, spectrographic representations of power, and that of periodicity

• High-quality speech morphing tool

• Spectrographic representation of power
• F0 adaptive complementary set of windows and spline based optimal smoothing

• Instantaneous frequency based F0 extraction
• With correlation-based F0 extraction integrated

• Spectrographic representation of periodicity
• Harmonic analysis based method 

F0

periodicity map

spectrogram

T-F coordinate

input
speech

F0

periodicity map

spectrogram

T-F coordinate

resynthesized
speechmorph
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Representation based on SFT
• Short-time Fourier Transform (SFT)-based spectrogram
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Representation based on SFT
• Short-time Fourier Transform (SFT)-based spectrogram

periodic in
the time domain

periodic in the freq. domain
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Representation based on STRAIGHT
• Spline-based optimum smoothing reconstructs the underlying 

smooth time-frequency representation.
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Use of morphed utterances
• R to L morphing bet. r/l-ight generated by Klatt synthesizer [Kubo+’98]
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Use of morphed utterances
• Results of categorical listening tests [Kubo+’98]

• 1 American listener
• 7 Japanese listeners
• Probability of perceiving R or L in the presented sounds

0

0.2

0.4

0.6

0.8

1.0

R
L

0

0.2

0.4

0.6

0.8

1.0

R
L
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Use of morphed utterances
• Morphing of a native utterance and its accented version [Kato+’11]

• Use of a pair of word utterances spoken by a bilingual speaker
• Normal Tokyo Japanese
• Heavily American accented Japanese

fundamental frequency (F0)

phonetic duration (dur)

spectral envelope & aperiodicity (sp_ap)

F0 & dur (F0_dur)

all the parameters (all)

0                 0.25                0.5                0.75               1
morphing rate

igaku (medical science)

1. 2.

3.

4.

5.

6.

7. = 2.
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• Prosodic insensitivity of foreign listeners [Kato+’11]
• 42 Japanese listeners
• 15 Australian listeners
• Judgement of naturalness as Tokyo Japanese

Use of morphed utterances

Morphing only in terms of duration
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Figure 2: Subjective naturalness for each accented Japanese and each acoustic parameter as a function of morphing rate. ! : subjective
naturalness; " : p-value (! means that the p-value > 0.2).

ican Japanese and Korean Japanese. These stimuli were pre-
sented to both native Japanese listeners and Australian listeners,
who were asked to judge the naturalness of the utterances as
Tokyo Japanese. The experimental results showed that the de-
gree to which language transfer affects naturalness varies from
acoustic parameter to acoustic parameter and from language to
language, and the degree was different between native Japanese
and Australian learners. Especially, Australian learners were
insensitive to F0 pattern changes. Reasons why the Australian
learners were unable to judge the naturalness of certain acoustic
features with the same precision of natives was then discussed.
Lastly, some ideas for how this research can be applied to the
classroom were touched on.

In future work, we’re planning to use learners of Japanese
except Australian, such as Chinese or Korean. We’re also inter-
ested in using more bilinguals because the results obtained in
this paper may be dependent on the two bilingual speakers.
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Figure 2: Subjective naturalness for each accented Japanese and each acoustic parameter as a function of morphing rate. ! : subjective
naturalness; " : p-value (! means that the p-value > 0.2).

ican Japanese and Korean Japanese. These stimuli were pre-
sented to both native Japanese listeners and Australian listeners,
who were asked to judge the naturalness of the utterances as
Tokyo Japanese. The experimental results showed that the de-
gree to which language transfer affects naturalness varies from
acoustic parameter to acoustic parameter and from language to
language, and the degree was different between native Japanese
and Australian learners. Especially, Australian learners were
insensitive to F0 pattern changes. Reasons why the Australian
learners were unable to judge the naturalness of certain acoustic
features with the same precision of natives was then discussed.
Lastly, some ideas for how this research can be applied to the
classroom were touched on.

In future work, we’re planning to use learners of Japanese
except Australian, such as Chinese or Korean. We’re also inter-
ested in using more bilinguals because the results obtained in
this paper may be dependent on the two bilingual speakers.
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• Prosodic insensitivity of foreign listeners [Kato+’11]
• 42 Japanese listeners
• 15 Australian listeners
• Judgement of naturalness as Tokyo Japanese

Use of morphed utterances

Morphing only in terms of F0
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Figure 2: Subjective naturalness for each accented Japanese and each acoustic parameter as a function of morphing rate. ! : subjective
naturalness; " : p-value (! means that the p-value > 0.2).

ican Japanese and Korean Japanese. These stimuli were pre-
sented to both native Japanese listeners and Australian listeners,
who were asked to judge the naturalness of the utterances as
Tokyo Japanese. The experimental results showed that the de-
gree to which language transfer affects naturalness varies from
acoustic parameter to acoustic parameter and from language to
language, and the degree was different between native Japanese
and Australian learners. Especially, Australian learners were
insensitive to F0 pattern changes. Reasons why the Australian
learners were unable to judge the naturalness of certain acoustic
features with the same precision of natives was then discussed.
Lastly, some ideas for how this research can be applied to the
classroom were touched on.

In future work, we’re planning to use learners of Japanese
except Australian, such as Chinese or Korean. We’re also inter-
ested in using more bilinguals because the results obtained in
this paper may be dependent on the two bilingual speakers.
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Figure 2: Subjective naturalness for each accented Japanese and each acoustic parameter as a function of morphing rate. ! : subjective
naturalness; " : p-value (! means that the p-value > 0.2).

ican Japanese and Korean Japanese. These stimuli were pre-
sented to both native Japanese listeners and Australian listeners,
who were asked to judge the naturalness of the utterances as
Tokyo Japanese. The experimental results showed that the de-
gree to which language transfer affects naturalness varies from
acoustic parameter to acoustic parameter and from language to
language, and the degree was different between native Japanese
and Australian learners. Especially, Australian learners were
insensitive to F0 pattern changes. Reasons why the Australian
learners were unable to judge the naturalness of certain acoustic
features with the same precision of natives was then discussed.
Lastly, some ideas for how this research can be applied to the
classroom were touched on.

In future work, we’re planning to use learners of Japanese
except Australian, such as Chinese or Korean. We’re also inter-
ested in using more bilinguals because the results obtained in
this paper may be dependent on the two bilingual speakers.
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Feedback in a learner’s own voice
• Prosodic correction of a learner’s utterance [Hirose+’03]

• The corrected version is given to a learner of Japanese as feedback
• The feedback is generated in his/her own voice.

• PSOLA (Pitch Synchronous OverLap Add)-based implementation

• Easy comparison between a bad example and a good one.

could be a better presentation of mora pitch value.  Here, the 
target value was calculated as the F0 value of the linear 
regression approximation of the F0 movement at the end of 
mora.  The average F0 value was found to be a good 
presentation also, if its value was viewed in VC unit.  The 
ratio of the mora F0 vales thus defined at frames i-1 and i was 
used as the recognition parameter.  For each mora length and 
each accent type, distribution of the ratio was assumed as a 
Gaussian, and its center and deviation were calculated from 
the training data.  An accent type recognition experiment was 
conducted for ATR continuous speech corpus with 503 
sentence utterances [3].  Ninety percent of the corpus was 
used for training and the rest was used for the testing.  As the 
result, 75.5 % of correct recognition was realized.  The detail 
was reported elsewhere already [4].  The use of mora F0

values with a good match to the perceived pitch values will 
also be beneficial in that the learner can obtain a better view 
on his/her pitch control from mora F0 sketch on the display.   

Figure 1: Binary description of 4-mora Japanese pitch accent 
patterns.  The fifth circle point in each pattern represents 
pitch level of the attached particle.  Type 0 can be 
distinguished from type 4 by the particle's pitch level.

3. System outline 

The system first requests the learner to pronounce homonym 
pairs (with different meaning according to the accent types) 
either in isolation or in sentences.  The readings of words and 
sentences are shown in Roman characters on display together 
with Japanese orthographic representation.  The learner's 
utterances are recorded and segmented into mora by the 
forced alignment using mono-phone HMMs.  Then the accent 
types of the homonyms (bunsetsu's for sentence utterances) 
are identified using the method explained in the previous 
section.  The system shows on display whether the accent 
type pronunciation is correct or not, together with some 
information useful for the training.  An example is shown in 
Fig. 2.  Also, the leaner can hear the teacher's (correct) sound 
pre-stored in the system by clicking a button on the display.  
This system shall be called the baseline system hereinafter.   

Correct accent fall position: 
Ki ru (to wear) Ki＼ ru (to cut) 

Detected accent fall position: 

Ki＼ ru bad! 49.96 45.81 

Ki ru bad! 46.25 46.21 

Figure 2: An example of accent type pronunciation evaluation 

result.  Symbol "＼" corresponds to the fall of the pitch 

accent from high to low at the accent nucleus.  "bad!" 
indicates that the accent type is wrongly pronounced.  If the 
accent type is correct, "good!" will appear instead.  The four 
digit figures (such as "49.96") corresponds mora F0 values in 
MIDI musical scale.

The major point of this paper is that we added new audio 
and visual feedbacks to facilitate learning process.  The audio 

feedback is the learner's utterance, whose prosodic features 
are modified to teacher's ones.  The visual feedback is the 
waveforms before and after modification with schematic 
illustration of pitch movements.  These are explained in the 
following sections.  From now on, the system with these new 
feedbacks shall be called the new system. 

4. Speech modification 

Learner's speech was modified in its F0, phoneme duration, 
and waveform amplitude to have prosodic features similar to 
teacher's speech through Time-Domain Pitch Synchronous 
OverLap Add (TD-PSOLA) [5].  The speech quality after 
TD-PSOLA process largely depends on the accuracy of pitch 
marking.  Since the speech modification process should be 
done in online, no manual correction is allowed for detected 
pitch marks, which is different from the case of developing 
waveform concatenative speech synthesis systems.  To solve 
this problem, we have utilized an automatic pitch marking 
method developed by the authors [6].  This method first 
locates the pitch marks based on the pitch extraction results, 
and then adjusts the locations so as to maximize a (total) cost 
through dynamic programming.  The (local) cost is the signal 
amplitude of one pitch period which is hanning windowed 
centered at the pitch mark.   

4.1. F0 modification 

The F0 modification process stands in the pitch mapping 
function.  This mapping function was realized with the 
teacher's speech pitch marks as the basis.  First, the 
correspondence of phonemes in teacher's speech and learner's 
speech was obtained based on the result of forced alignment.  
Then each phoneme's pitch marks in the student's signal were 
replaced by the corresponding phoneme's pitch marks in the 
teacher's signal, after having changed in the overall F0 level 
in order to keep student's original voice tone after 
modification.  This was realized simply by multiplying the 
teacher's set of pitch mark delays (periods) by a ratio of the F0

means of the two signals: 
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Where PmD stands for the mean of the pitch mark delays on 
the observation segment.  ut. means that the calculation is 
done on the whole utterance, and S and T stand for Student 
and Teacher, respectively.   

4.2. Duration modification 

The previous process did not take into account the fact that the 
number of pitch marks should differ between the two signals, 
and did not manage the phoneme duration.  These were 
handled in the duration modification process.  The teacher's 
signal again served as basis during modification. 

4.2.1. Duration adjustment 

Here again, to respect the student's speaking rate, we first 
calculated the speaking rate ratio (SRratio) between the two 
signals, and multiplied the teacher's phoneme durations by the 
ratio:

Time  [s]

Original signal

Modified signal

Figure 3: An example of visual feedback for the couple of 
homonyms "kiru (to wear)" and "kiru (to cut)."

6. Experiment 

In order to evaluate the system, an experiment was conducted 
on the training of accent type pronunciation.  The aim of the 
experiment is to observe if there is any difference in the 
learning process when using the baseline system and when 
using the new system.  Eight non-Japanese male speakers, all 
foreign students at the University of Tokyo, were asked to use 
the both systems alternatively.  They are 1 Bangladesh, 2 
French, 1 Algerian, 1 Polish, 2 Chinese, and 1Urugaryan.   

The experimental utterance consisted of the 10 homonym 
pairs and 4 sentences.  Each sentence includes a homonym 
pair, and the system only evaluates the accent type 
pronunciation of the part.  The experiment was done first 
using the new system for a pair and then using the baseline 
system for another pair so that habituation of using systems 
might not lead to a biased result, at least it did no work 
positively to the new system.   

The learners were asked to utter the words/sentence 
without any accent type information at the first try.  Then the 
feedbacks would be offered, and the further tries would be 
attended if necessary.  An exercise would be considered as 
over when the student gets a "good" score, and a maximum of 
5 trials were permitted.  The number of tries before getting the 
"good" score was recorded and used as an index for the 
training efficiency.  Even if the learner could not reach the 
"good" score after 5 trials, it was assumed that he got the 
"good" score. (The number of trials was counted as 5.)  While 
experimenting the systems, the learners were also asked to fill 
in a form keeping their impressions using the new system.  
The form includes questions on: 
1. Efficiency of the audio feedback in learner's voice.  From 

1 (inefficient) to 5 (very useful). 
2. Efficiency of the visual feedback as shown in Fig. 2.  

From 1 (inefficient) to 5 (very useful). 
3. Closeness of the modified speech to the learner's voice.  

From 1 (totally different) to 5 (the same voice). 
It appeared that the first set of experiments based on 

isolated pairs of homonyms did not lead to striking differences 
between the two systems: the averaged number of trials being 
2.4 for the baseline system and 2.5 for the new system.  
However, we could observe a difference in the continuous 
speech exercises, where the typical number of trials fell from 
4.8 when used the baseline system to 3.8 when used the new 
system.  The scores of the three questions were 4.4, 4.0 and 

4.2, all indicating the positive effects of the feedbacks newly 
added.

Here are some comments the learners wrote after the 
experiment: In continuous speech, the modified signal would 
be easier to understand if there were a function to isolate 
words or parts in question from the sentence, and enhance the 
modifications.  The function to slow down the modified 
speech would also do, they said.  It also seemed that the new 
visual feedback was difficult to understand for beginners. 

7. Conclusion 

A CALL system to train Japanese pitch accent pronunciation 
was constructed.  It corrects the prosodic features of the 
learner's utterance by the TD-PSOLA scheme, and outputs the 
corrected speech as an audio corrective feedback.  Through 
the experiment of using the systems with and without such a 
feedback, the corrective feedback in learner's own voice was 
shown to be effective especially when the training task came 
complicated.   

Further studies are planned on the following points: 
1. To improve the speech quality by manipulating spectral 

features also. 
2. To make it possible to choose the teacher's signal among 

a set of speakers to get the closest voice to the student's 
signal.

3. To improve the visual feedback to enhance important 
information.
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OUTLINE 
• Introduction (TK) 
• Segmental Aspect & Speech Recognition Tech. (TK) 

• Pronunciation Structure Model (NM) 
• Prosodic Aspect (NM) 
• Speech Synthesis Tech. for CALL (NM) 
• CALL Systems (TK) 
• Database for CALL (NM) 
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English CALL System: HUGO @Kyoto Univ. 
[Tsubota, Imoto, Raux 2002] 
• For Japanese college 

students, so that they can 
introduce Japanese cultures 

• Dedicated acoustic model & 
error prediction scheme for 
Japanese students 

• Deployed and used in 
classrooms 
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English CALL System: HUGO @Kyoto Univ. 

• Goal: Pinpointing the pronunciation errors which degrade 
intelligibility and providing effective feedback 

• Practice consists of two phases 
1. Dialogue-based skit (for natural conversation) 
2. Training on specific errors detected in the first phase (using a phrase 

or a word) 

• Pronunciation error detection 
• Segmental pronunciation  hand-crafted phonological rules 
• Accent (Primary & Secondary Stress)  multiple prosodic features 
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List of Pronunciation Errors 

V/B substitution (problem) 

Final vowel insertion (let) 

CCV-cluster insertion (active) 

VCC-cluster insertion (study) 

H/F substitution (fire) 

W/Y deletion (would)  

SH/CH substitution (choose) 

R/L substitution (road) 

ER/A substitution (paper) 

Non-reduction (student) 

•Built from literature in ESL 

•Remove error patterns with low detection rate 
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Estimate 

Find critical errors 

Intelligibility Assessment based on Error 
Statistics 
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SH ER RL VR VB FI CCV VCC HF WY 

vowel insertion: 
beginner  middle /r/-/l/ confusion: 

middle  advanced 

Priority of Training on Specific Errors according 
to Intelligibility Level 
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NativeAccent [Eskenazi 2007] 
• Product of Fluency Project of CMU 
• English learning 

• Error detection and feedback on articulation 
• Up to 28 L1: Japanese, Russian, French… 
• 800 exercises 
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English CALL System @ CUHK 
[Meng 2010] 
• For Chinese learners of English 
• Corpus: 100 Cantonese and 111 Mandarin L1 

• Reading a paragraph, words 

• Pronunciation error model 
• Hand-crafted phonological rules 
• Data-driven patterns 

• GOP score 
• Pre-filtering based on duration models 
• Synthesizing expressive speech to convey emphasis in feedback 

generation 
• Synthesizing visual speech with articulator animation 
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Shadowing Exercise [Luo 2009] 
• listening and repetition of native utterances, online 

• Simultaneous training of listening and speaking skills 

• High correlation between GOP and TOEIC scores (= 0.90) 
• Higher than simple reading 
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Corr. = 0.90 

102 



ETS SpeechRater for TOEFL 
[Zechner 2007] 
• Assessment of unconstrained English speech 

• TOEFL iBT Practice Online (TPO) 
• iBT Field Study 

• Acoustic model: non-native speech (30hours) 
• Language model: non-native speech + broadcast news 
• Features: ASR results (word ID, confidence), speech rate, pause 

length… 40 in total 
• Scoring: linear regression model 
• Correlation with human rater: 0.67 

• Inter-human correlation 0.94 
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Dialog-Based English CALL @POSTECH 
[Lee 2010] 
• Situated dialog…(ex.) shopping 
• ASR+SLU 
• Example-Based Dialog Management 

• very limited domain 

• Corrective feedback based on example selection 
 

• Field trial on elementary school 
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ETS SpeechRater for TOEFL 
[Zechner 2007] 
• Assessment of unconstrained English speech 

• TOEFL iBT Practice Online (TPO) 
• iBT Field Study 

• Acoustic model: non-native speech (30hours) 
• Language model: non-native speech + broadcast news 
• Features: ASR results (word ID, confidence), speech rate, pause 

length… 40 in total 
• Scoring: linear regression model 
• Correlation with human rater: 0.67 

• Inter-human correlation 0.94 
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OUTLINE

• Introduction (TK)

• Segmental Aspect & Speech Recognition Tech. (TK)

•Pronunciation Structure Model (NM)

• Prosodic Aspect (NM)

• Speech Synthesis Tech. for CALL (NM)

• CALL System (TK)

• Database for CALL (NM)
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Speech database distribution sites
• Useful information source for speech databases

• Linguistic Data Consortium (LDC, US)
• http://www.ldc.upenn.edu/

• European Language Resources Association (ELRA, EU)
• http://www.elra.info/

• Speech Resource Consortium (SRC, Japan)
• http://research.nii.ac.jp/src/, http://research.nii.ac.jp/src/eng/index.html

• Advanced LAnGuage INformation forum (ALAGIN, Japan)
• http://www.alagin.jp/, http://www.alagin.jp/index-e.html

• GSK (Gengo-Shigen-Kyokai = Langauge Resource Association, Japan)
• http://www.gsk.or.jp/index.html, http://www.gsk.or.jp/index_e.html

• Chinese Linguistic Data Consortium (C-LDC, China)
• http://www.chineseldc.org/

• These sites distribute speech & language databases for general purposes.
• Only a part of the databases include non-native speech samples.

107

http://www.ldc.upenn.edu
http://www.ldc.upenn.edu
http://www.elra.info
http://www.elra.info
http://research.nii.ac.jp/src/
http://research.nii.ac.jp/src/
http://research.nii.ac.jp/src/eng/index.html
http://research.nii.ac.jp/src/eng/index.html
http://www.alagin.jp
http://www.alagin.jp
http://www.alagin.jp/index-e.html
http://www.alagin.jp/index-e.html
http://www.gsk.or.jp/index.html
http://www.gsk.or.jp/index.html
http://www.gsk.or.jp/index_e.html
http://www.gsk.or.jp/index_e.html
http://www.chineseldc.org
http://www.chineseldc.org


Tutorial on CALL in INTERSPEECH2012 by T. Kawahara and N. Minematsu

Non-native speech data collection
• More useful information source for non-native speech data

• “Non-native speech database” in Wikipedia
• http://en.wikipedia.org/wiki/Non-native_speech_database
• Based on [M. Raab+’07]
• 42+ non-native databases are briefly described.
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Development of ERJ database
• ERJ = English Read by Japanese [Minematsu+’04]

• Development of a database containing many pronunciation errors that are 
observed commonly in the English spoken by Japanese

• A main focus is put on the errors that are made rather unconsciously.
• Spontaneous speech is technically challenging. So read speech is focused on.
• Target language = General American English (GAE)

• Selection of reading material
• Word and sentence sets considering the segmental aspects of GAE
• Word and sentence sets considering the prosodic aspects of GAE
• In total, 807 sentences and 1009 words are prepared.

Table 1: Word and sentence sets for the segmental aspect
set size

Phonemically-balanced words 300
Minimal pair words 600
TIMIT-based phonemically-balanced sentences 460
Sentences including phoneme sequences difficult for
Japanese to pronounce correctly 32

Sentences designed for test set 100

Table 2: Word and sentence sets for the prosodic aspect
set size

Words with various lexical accent patters 109
Sentences with various intonation patterns 94
Sentences with various rhythm patterns 121

2. ERJ database
In the listening test, we had to present speech stimuli that con-
tained a wide enough variety of pronunciation errors. To satisfy
this condition, we defined a subset of utterances from those in
ERJ database. In this section, we describe ERJ database briefly.

2.1. Selection of reading material

Syllabuses of English pronunciation training is mainly divided
into two aspects; segmental and prosodic. As for reading ma-
terial, sentence sets and word sets are used for both aspects,
shown in Table 1 and Table 2. On reading sheets, phone-
mic/prosodic symbols are assigned to each word to facilitate
recording procedures, namely, learners did not have to look
up an English dictionary for recording. Exactly speaking, this
database does not reflect the learners’ true pronunciation or
reading proficiency directly because the reading sheets include
many hints for pronunciation, i.e. phonemic/prosodic symbols.

2.2. Selection of speakers

To realize a balanced selection of speakers, 100 male and 100
female university students are randomly selected at twenty in-
stitutes all over Japan. All the sentences in Table 1 and Table 2
are divided into eight groups and all the words in the tables are
into five groups. The required amount of recording per speaker
is a sentence group (∼120 sentences) and a word group (∼220
words). Each sentence is read by twelve speakers and each word
is read by twenty speakers for both genders. The total number
of sentence utterances is about 24.7K and that of word utter-
ances is about 45.5K. Besides the Japanese learners, eight male
and twelve female General American speakers read the mate-
rial. One speaker reads a half of sentences of all the sets (∼480
sentences) and a half of words of all the sets (∼550 words).

2.3. Recording Japanese utterances and American ones

Before the recording, Japanese learners are allowed to practice
reading sentences and words on their reading sheets. In the
recording, they are asked to read the sentences and words re-
peatedly until they can do what they think is correct pronuncia-
tion. Then, the resulting database is a collection of English ut-
terances judged as correct by Japanese learners. As for record-
ing American utterances, no special instruction is given and
they read the sentences and the words in a normal speaking rate.

2.4. Rating Japanese learners’ pronunciation

To a part of sentence utterances (∼3.8K utterances) and
word utterances (∼5.7K utterances), five-scale goodness scores
of pronunciation are assigned by five American teachers of
English, who have good experience of teaching English to
Japanese and good knowledge of phonetics. Here, 1 and 5 mean
very poor and very good, respectively. Since the reading ma-
terial is divided into several groups (see Table 1 and Table 2),
the utterances are rated using different strategies depending on
which group each utterance belongs to. For example, for the
phonemically-balanced sentences, the teachers rate them based
on whether indented phonemes can be perceived well.

3. Selection of Japanese utterances from
ERJ for the listening test

Since it is practically impossible to present all the utterances in
ERJ database, we had to select a subset of the utterances in the
database. To measure the intelligibility of Japanese accented
English utterances objectively, these utterances should include
a large enough variety of errors including linguistic ones such
as grammatical errors. Since ERJ database contains only read
speech, however, it comes to have no linguistic error. Further,
the sentences designed for prosodic variation tend to be those
with simple syntactic structure. If they are used for the listen-
ing test, due to syntactic simplicity, the obtained intelligibility
will be biased. On the other hand, although the sentences of the
TIMIT-based phonemically-balanced sentence set also have no
linguistic error, to achieve a high balance, they include rather
rare words and phrases including proper names. These are con-
sidered as somewhat unnatural wording examples. For the lis-
tening test, we decided to define a subset of sentences by select-
ing sentences from the phonemically-balanced set.

First, we selected some sentences from the 460 sentences
and, to each of the selected sentences, we adequately assigned
a Japanese learner. For sentence selection, the following two
linguistic parameters were used: 1) the number of words in a
sentence and 2) perplexity of that sentence calculated using bi-
gram language models trained with three years’ news articles
included in WSJ database. Here, the vocabulary was defined as
the most frequent 65K words in the articles plus 117 words to
have no unknown word in the 460 sentences. According to the
number of words of a sentence (n), the 460 sentences were di-
vided into three groups of a (n ≤6), b (7≤ n ≤8), and c (9≤n).
Their sizes are 158, 175, and 127 for a, b, and c. Similarly, ac-
cording to perplexity (PP), the 460 sentences were divided into
another three groups of A (PP≤2000), B (2000< PP ≤7000),
and C (7000 <PP). Very high values of PP are because 1) we
have no unknown word and 2) the domain of sentences in the
TIMIT set is different from that of news articles. The sizes of
A, B, and C are 156, 141, and 163. By combining these two
parameters of n and PP, we had 9 groups of A-a, B-a, C-a, . . .,
A-c, B-c, and C-c, which are referred to as groups 1 to 9 here-
after. The average number of sentences in a group was 51.1.

For speaker assignment, the following strategy was taken.
By referring to the goodness scores of phoneme pronunciation
included in ERJ database, the 100 male speakers and the 100
female speakers were separately sorted and we obtained even-
numbered 50 speakers and odd-numbered 50 speakers for each
gender. A speaker in the even-numbered male speakers was as-
signed to a sentence of group m (m=2, 4, 6, and 8). Namely, he
was assigned to four sentences. A speaker in the odd-numbered
male speakers was assigned to a sentence of group l (l=1, 3, 7,

Table 1: Word and sentence sets for the segmental aspect
set size

Phonemically-balanced words 300
Minimal pair words 600
TIMIT-based phonemically-balanced sentences 460
Sentences including phoneme sequences difficult for
Japanese to pronounce correctly 32

Sentences designed for test set 100

Table 2: Word and sentence sets for the prosodic aspect
set size

Words with various lexical accent patters 109
Sentences with various intonation patterns 94
Sentences with various rhythm patterns 121

2. ERJ database
In the listening test, we had to present speech stimuli that con-
tained a wide enough variety of pronunciation errors. To satisfy
this condition, we defined a subset of utterances from those in
ERJ database. In this section, we describe ERJ database briefly.

2.1. Selection of reading material

Syllabuses of English pronunciation training is mainly divided
into two aspects; segmental and prosodic. As for reading ma-
terial, sentence sets and word sets are used for both aspects,
shown in Table 1 and Table 2. On reading sheets, phone-
mic/prosodic symbols are assigned to each word to facilitate
recording procedures, namely, learners did not have to look
up an English dictionary for recording. Exactly speaking, this
database does not reflect the learners’ true pronunciation or
reading proficiency directly because the reading sheets include
many hints for pronunciation, i.e. phonemic/prosodic symbols.

2.2. Selection of speakers

To realize a balanced selection of speakers, 100 male and 100
female university students are randomly selected at twenty in-
stitutes all over Japan. All the sentences in Table 1 and Table 2
are divided into eight groups and all the words in the tables are
into five groups. The required amount of recording per speaker
is a sentence group (∼120 sentences) and a word group (∼220
words). Each sentence is read by twelve speakers and each word
is read by twenty speakers for both genders. The total number
of sentence utterances is about 24.7K and that of word utter-
ances is about 45.5K. Besides the Japanese learners, eight male
and twelve female General American speakers read the mate-
rial. One speaker reads a half of sentences of all the sets (∼480
sentences) and a half of words of all the sets (∼550 words).

2.3. Recording Japanese utterances and American ones

Before the recording, Japanese learners are allowed to practice
reading sentences and words on their reading sheets. In the
recording, they are asked to read the sentences and words re-
peatedly until they can do what they think is correct pronuncia-
tion. Then, the resulting database is a collection of English ut-
terances judged as correct by Japanese learners. As for record-
ing American utterances, no special instruction is given and
they read the sentences and the words in a normal speaking rate.

2.4. Rating Japanese learners’ pronunciation

To a part of sentence utterances (∼3.8K utterances) and
word utterances (∼5.7K utterances), five-scale goodness scores
of pronunciation are assigned by five American teachers of
English, who have good experience of teaching English to
Japanese and good knowledge of phonetics. Here, 1 and 5 mean
very poor and very good, respectively. Since the reading ma-
terial is divided into several groups (see Table 1 and Table 2),
the utterances are rated using different strategies depending on
which group each utterance belongs to. For example, for the
phonemically-balanced sentences, the teachers rate them based
on whether indented phonemes can be perceived well.

3. Selection of Japanese utterances from
ERJ for the listening test

Since it is practically impossible to present all the utterances in
ERJ database, we had to select a subset of the utterances in the
database. To measure the intelligibility of Japanese accented
English utterances objectively, these utterances should include
a large enough variety of errors including linguistic ones such
as grammatical errors. Since ERJ database contains only read
speech, however, it comes to have no linguistic error. Further,
the sentences designed for prosodic variation tend to be those
with simple syntactic structure. If they are used for the listen-
ing test, due to syntactic simplicity, the obtained intelligibility
will be biased. On the other hand, although the sentences of the
TIMIT-based phonemically-balanced sentence set also have no
linguistic error, to achieve a high balance, they include rather
rare words and phrases including proper names. These are con-
sidered as somewhat unnatural wording examples. For the lis-
tening test, we decided to define a subset of sentences by select-
ing sentences from the phonemically-balanced set.

First, we selected some sentences from the 460 sentences
and, to each of the selected sentences, we adequately assigned
a Japanese learner. For sentence selection, the following two
linguistic parameters were used: 1) the number of words in a
sentence and 2) perplexity of that sentence calculated using bi-
gram language models trained with three years’ news articles
included in WSJ database. Here, the vocabulary was defined as
the most frequent 65K words in the articles plus 117 words to
have no unknown word in the 460 sentences. According to the
number of words of a sentence (n), the 460 sentences were di-
vided into three groups of a (n ≤6), b (7≤ n ≤8), and c (9≤n).
Their sizes are 158, 175, and 127 for a, b, and c. Similarly, ac-
cording to perplexity (PP), the 460 sentences were divided into
another three groups of A (PP≤2000), B (2000< PP ≤7000),
and C (7000 <PP). Very high values of PP are because 1) we
have no unknown word and 2) the domain of sentences in the
TIMIT set is different from that of news articles. The sizes of
A, B, and C are 156, 141, and 163. By combining these two
parameters of n and PP, we had 9 groups of A-a, B-a, C-a, . . .,
A-c, B-c, and C-c, which are referred to as groups 1 to 9 here-
after. The average number of sentences in a group was 51.1.

For speaker assignment, the following strategy was taken.
By referring to the goodness scores of phoneme pronunciation
included in ERJ database, the 100 male speakers and the 100
female speakers were separately sorted and we obtained even-
numbered 50 speakers and odd-numbered 50 speakers for each
gender. A speaker in the even-numbered male speakers was as-
signed to a sentence of group m (m=2, 4, 6, and 8). Namely, he
was assigned to four sentences. A speaker in the odd-numbered
male speakers was assigned to a sentence of group l (l=1, 3, 7,
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Development of ERJ database
• Preparation of reading sheets

• Many pronunciation guides are on the sheets
• Phonemic symbols
• Stress marks
• Intonation curves
• etc.

Table 8: Examples of sentences of various intonation patterns with phonemic symbols and prosodic symbols
S1_0086 That’s from my brother who lives in London.

[DH AE1 T S] [F R AH1 M] [M AY1] [B R AH1 DH AXR0] [HH UW1] [L IH1 V Z]
[AX0 N] [L AH1 N D AX0 N]

S1_0087 That’s from my brother, who lives in London.
[DH AE1 T S] [F R AH1 M] [M AY1] [B R AH1 DH AXR0] [HH UW1] [L IH1 V Z]
[AX0 N] [L AH1 N D AX0 N]

S1_0091
Cauliflower, broccoli, cabbage, sprouts, and onions.
[K AA1 L AX0 F L AW2 AXR0] [B R AA1 K AX0 L IY0] [K AE1 B AX0 JH]
[S P R AW1 T S] [AE1 N D] [AH1 N Y AX0 N Z]

S1_0094
Is this elevator going up or down ?
[IH1 Z] [DH IH1 S] [EH1 L AX0 V EY2 T AXR0] [G OW1 AX0 NG] [AH1 P]
[AO1 R] [D AW1 N]

S1_0097
She knows you, doesn’t she ?
[SH IY1] [N OW1 Z] [Y UW1] [D AH1 Z AX0 N T] [SH IY1]

Table 9: Examples of sentences of various rhythm patterns with phonemic symbols and prosodic symbols
S1_0105 Come to tea.

/ + - @ /
[K AH1 M] [T UW1] [T IY1]

S1_0106 Come to tea with John.
/ + - + - @ /

[K AH1 M] [T UW1] [T IY1] [W IH1 DH] [JH AA1 N]
S1_0107 Come to tea with John and Mary.

/ + - @ / - + - @ -/
[K AH1 M] [T UW1] [T IY1] [W IH1 DH] [JH AA1 N] [AE1 N D] [M EH1 R IY0]

S1_0108 Come to tea with John and Mary at ten.
/ + - @ / - + - + - @ /

[K AH1 M] [T UW1] [T IY1] [W IH1 DH] [JH AA1 N] [AE1 N D] [M EH1 R IY0]
[AE1 T] [T EH1 N]

Table 10: Examples of words of various accent patterns with phonetic symbols and word stress symbols
W1_0201 a dark room W1_0207 almond-eyed

[AX0][D AA1 R K][R UW1 M] [AA2 M AX0 N D AY1 D]
W1_0202 a darkroom W1_0208 broad-minded

[AX0][D AA1 R K R UW2 M] [B R AO1 D M AY1 N D AX0 D]
W1_0203 a light housekeeper W1_0209 free-range

[AX0][L AY1 T][HH AW1 S K IY2 P AXR0] [F R IY1 R EY1 N JH]
W1_0204 a lighthouse keeper W1_0210 blue-black

[AX0][L AY1 T HH AW2 S][K IY1 P AXR0] [B L UW1 B L AE1 K]
W1_0205 the brief case W1_0211 forward-looking

[DH AX0][B R IY1 F][K EY1 S] [F AO1 R W AXR0 D L UH2 K AX0 NG]
W1_0206 the briefcase W1_0212 built-in

[DH AX0][B R IY1 F K EY2 S] [B IH1 L T IH1 N]

The distance of the table is represented in the form of ratio
of the distance between the phoneme pair in JE to that in
AE and the ratios are always less than 1.0. It can be defi-
nitely said that Japanese tend to confuse a phoneme of each
pair with the other. Especially, mid and low vowels such
as /ah/, /ae/, /aa/ are much confusing with each other. This
is because the Japanese language has only one mid and low
vowel of /a/ and students tend to replace all the English mid
and low vowels with a Japanese vowel of /a/.

6.3.3. Vowel insertion between consecutive consonants
It is found that most of the state-4s of consonants and

the state-2s of vowels are located under a single subtree in
JE. This is because of the well-known JE habit of vowel
insertion. In Japanese, every consonant is followed by a
vowel. Then, Japanese tend to insert an additional vowel
between two consecutive consonants when speaking En-
glish. Since these errors were not represented in the tran-
scription used to train HMMs, state-4s of consonants are
expected to have similar spectrums to state-2s of vowels.

Table 8: Examples of sentences of various intonation patterns with phonemic symbols and prosodic symbols
S1_0086 That’s from my brother who lives in London.

[DH AE1 T S] [F R AH1 M] [M AY1] [B R AH1 DH AXR0] [HH UW1] [L IH1 V Z]
[AX0 N] [L AH1 N D AX0 N]

S1_0087 That’s from my brother, who lives in London.
[DH AE1 T S] [F R AH1 M] [M AY1] [B R AH1 DH AXR0] [HH UW1] [L IH1 V Z]
[AX0 N] [L AH1 N D AX0 N]

S1_0091
Cauliflower, broccoli, cabbage, sprouts, and onions.
[K AA1 L AX0 F L AW2 AXR0] [B R AA1 K AX0 L IY0] [K AE1 B AX0 JH]
[S P R AW1 T S] [AE1 N D] [AH1 N Y AX0 N Z]

S1_0094
Is this elevator going up or down ?
[IH1 Z] [DH IH1 S] [EH1 L AX0 V EY2 T AXR0] [G OW1 AX0 NG] [AH1 P]
[AO1 R] [D AW1 N]

S1_0097
She knows you, doesn’t she ?
[SH IY1] [N OW1 Z] [Y UW1] [D AH1 Z AX0 N T] [SH IY1]

Table 9: Examples of sentences of various rhythm patterns with phonemic symbols and prosodic symbols
S1_0105 Come to tea.

/ + - @ /
[K AH1 M] [T UW1] [T IY1]

S1_0106 Come to tea with John.
/ + - + - @ /

[K AH1 M] [T UW1] [T IY1] [W IH1 DH] [JH AA1 N]
S1_0107 Come to tea with John and Mary.

/ + - @ / - + - @ -/
[K AH1 M] [T UW1] [T IY1] [W IH1 DH] [JH AA1 N] [AE1 N D] [M EH1 R IY0]

S1_0108 Come to tea with John and Mary at ten.
/ + - @ / - + - + - @ /

[K AH1 M] [T UW1] [T IY1] [W IH1 DH] [JH AA1 N] [AE1 N D] [M EH1 R IY0]
[AE1 T] [T EH1 N]

Table 10: Examples of words of various accent patterns with phonetic symbols and word stress symbols
W1_0201 a dark room W1_0207 almond-eyed

[AX0][D AA1 R K][R UW1 M] [AA2 M AX0 N D AY1 D]
W1_0202 a darkroom W1_0208 broad-minded

[AX0][D AA1 R K R UW2 M] [B R AO1 D M AY1 N D AX0 D]
W1_0203 a light housekeeper W1_0209 free-range

[AX0][L AY1 T][HH AW1 S K IY2 P AXR0] [F R IY1 R EY1 N JH]
W1_0204 a lighthouse keeper W1_0210 blue-black

[AX0][L AY1 T HH AW2 S][K IY1 P AXR0] [B L UW1 B L AE1 K]
W1_0205 the brief case W1_0211 forward-looking

[DH AX0][B R IY1 F][K EY1 S] [F AO1 R W AXR0 D L UH2 K AX0 NG]
W1_0206 the briefcase W1_0212 built-in

[DH AX0][B R IY1 F K EY2 S] [B IH1 L T IH1 N]

The distance of the table is represented in the form of ratio
of the distance between the phoneme pair in JE to that in
AE and the ratios are always less than 1.0. It can be defi-
nitely said that Japanese tend to confuse a phoneme of each
pair with the other. Especially, mid and low vowels such
as /ah/, /ae/, /aa/ are much confusing with each other. This
is because the Japanese language has only one mid and low
vowel of /a/ and students tend to replace all the English mid
and low vowels with a Japanese vowel of /a/.

6.3.3. Vowel insertion between consecutive consonants
It is found that most of the state-4s of consonants and

the state-2s of vowels are located under a single subtree in
JE. This is because of the well-known JE habit of vowel
insertion. In Japanese, every consonant is followed by a
vowel. Then, Japanese tend to insert an additional vowel
between two consecutive consonants when speaking En-
glish. Since these errors were not represented in the tran-
scription used to train HMMs, state-4s of consonants are
expected to have similar spectrums to state-2s of vowels.
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Development of ERJ database
• Selection of speakers

• Quasi-random selection of university/college students of Japanese
• 100 male and 100 female Japanese
• 20 General American English (GAE) speakers

• Recording protocol
• About 120 sentences and 220 words are assigned to each student.

• About 400 sentences are assigned to each of the 20 American speakers.

• Pronunciation guides are shown in the reading sheet.
• The speakers read the material repeatedly until they “thought” that they read 

the material correctly.
• Error-free utterances judged by the speakers themselves.
• Still, many errors can be detected by teachers.
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Development of ERJ database
• Rating protocol

• Five American teachers of English are asked to rate some utterances of the 
individual students w.r.t the three aspects of pronunciation.
• Phonemic aspect / intonational aspect / rhythmic aspect
• As for prosodic rating, model utterances were presented to the teachers because 

they claimed that the task was difficult without prosodically perfect utterances.

• Use of the database
• Development of CALL systems and their modules
• Acoustic analysis of Japanese English
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Objective measurement of intelligibility
• How intelligible is JE? [Minematsu+’11]

• ERJ = many read utterances judged as error-free by the students
• Are these utterances understood correctly by US people?

• A huge listening test was done using a subset of ERJ database.
• Listeners : American with little exposure to Japanese English.

• JE utterances are presented through a telephone line.

• Task : just repeating what they have heard without trying to guess.
• Presentation of each utterance was done only once.
• Repetitive responses were transcribed by expert transcribers.

Playing speech files 
selected from ERJ

Listening to each
utterance only once

Repeating what the 
listener has heard.

Recording the 
response

Later, all the responses 
are transcribed.

Data were collected at 
Indiana Univ. with support 

from Ordinate corp.

800 JE + 600 AE utterances

17,416 JE + 12,859 AE  transcriptions

1 2

34

5

200 Japanese
20 Americans

173 American
listeners
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Objective measurement of intelligibility
• How intelligible is JE? [Minematsu+’11]

• ERJ = many read utterances judged as error-free by the students
• Are these utterances understood correctly by US people?
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S = #sentences in the group
M = #selected sentences from the group for male

F = #selected sentences from the group for female

Figure 1: Speaker assignment to each sentence group

and 9). Figure 1 shows this strategy schematically. Similar as-
signment was done for female speakers. This assignement strat-
egy was not always able to be carried out because the sizes of
some groups were less than 50. In this case, neighboring groups
or group 5 were used instead. It should be noted that, for each
gender, a particular sentence was assigned only once. Finally,
each of the 100 male and the 100 female speakers was assigned
to four sentences1. Totally, we obtained 400 utterances from
the 100 male speakers and another 400 utterances from the 100
female speakers. The sentence overlap between the two sets of
400 utterances is 381. As shown in Figure 1, we designed this
balanced subset very carefully.

For American speaker assignment, the following procedure
was carried out. From the overlapped 381 sentences, 100 sen-
tences were manually selected so carefully that the selected sen-
tences were distributed reasonably evenly for the 9 sentence
groups. During sentence selection, speaker assignment was
also done in such a way that gender ratio (M:F) in a sentence
group was 4:6. This is because ERJ database has eight male and
twelve female American speakers. The number of sentences per
American speaker was five (5 × (8 + 12) = 100).

4. The listening test
4.1. Selection of subjects

This listening test was conducted at Indiana University. The
subjects satisfying the following conditions were collected.

• The subject’s mother tongue is American English.

• He/she has no hearing problem.

• He/she has had no experience of talking with Japanese.

173 subjects were collected and their average age was 20.5.
Eighty percent of the subjects were from the State of Indiana.

4.2. Power normalization and white noise addition

Power normalization was done for all the stimuli because ERJ’s
utterances were recorded in different sites, which resulted in
providing utterances of different average power.

For American utterances, in addition to clear utterances, we
prepared noisy ones. Here we prepared utterances with differ-
ent signal-to-noise ratios (SNRs). SN=−5, −2.5, 0.0, 2.5, 5.0,

1A few speakers were assigned to three sentences and another few
speakers were to five sentences. The reason for that is not specified here
because it is trivial.

Table 3: #speakers for each group of pronunciation goodness
score ≤2.0 ≤2.5 ≤3.0 ≤3.5 ≤4.0 ≤4.5 ≤5.0
male 2 27 43 16 5 0 2

female 0 8 36 25 19 7 0
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Figure 2: Word-based intelligibility for different learner groups

and ∞. ∞ means clear (noise-free) utterances. Totally, we pre-
pared 6×100=600 utterances of American English. The reason
of preparing noisy utterances is that we were interested in to
which value of SNR the Japanese accent is equal in terms of
intelligibility, i.e. word identification rate.

4.3. Procedure of the listening test

The total number of utterances to be presented is 1,400 (400
male Japanese utterances, 400 female Japanese utterances, and
600 American utterances with/without noise). Out of these,
randomly selected 175 utterances were presented to a subject,
where more than one utterance of the same sentence were not
presented to that subject. To facilitate presentation, recording,
and transcription, this listening test was done through a tele-
phone line. A subject makes a call to the designated site and
this starts the listening test. After the subject declared his/her
ID and answered several questions, 175 utterances were pre-
sented. Each one was presented only once. The task was to
repeat what they just heard. The repetitive response was mon-
itored automatically on the other side and when the end of the
response was detected, the next utterance was presented. All the
responses were transcribed by experienced transcribers. Here,
involuntarily spoken utterances such as “I don’t know” or filled
pauses were also transcribed. The total amount of required
time for a subject was approximately 30 minutes. 173 subjects
joined this listening test and we obtained 17,416 transcriptions
for Japanese accented utterances and 12,859 transcriptions for
American utterances with/without white noise.

4.4. Discussion on the obtained trascriptions

For each of the Japanese utterances and the American utter-
ances, 21 American subjects repeated it, resulting in 21 tran-
scriptions on average. For each transcription, we counted
the number of correctly transcribed words semi-automatically,
where errors only by conjugational suffix or by singular/plural
form were treated as correct. A word-based intelligibility score
(word identification rate) was calculated for each utterance.

By referring to the goodness scores in ERJ database, the
100 male Japanese and the 100 female Japanese were clustered
into seven groups, shown in Table 3. For each group, the av-
erage intelligibility score was calculated, which is shown in
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Figure 1: Speaker assignment to each sentence group

and 9). Figure 1 shows this strategy schematically. Similar as-
signment was done for female speakers. This assignement strat-
egy was not always able to be carried out because the sizes of
some groups were less than 50. In this case, neighboring groups
or group 5 were used instead. It should be noted that, for each
gender, a particular sentence was assigned only once. Finally,
each of the 100 male and the 100 female speakers was assigned
to four sentences1. Totally, we obtained 400 utterances from
the 100 male speakers and another 400 utterances from the 100
female speakers. The sentence overlap between the two sets of
400 utterances is 381. As shown in Figure 1, we designed this
balanced subset very carefully.

For American speaker assignment, the following procedure
was carried out. From the overlapped 381 sentences, 100 sen-
tences were manually selected so carefully that the selected sen-
tences were distributed reasonably evenly for the 9 sentence
groups. During sentence selection, speaker assignment was
also done in such a way that gender ratio (M:F) in a sentence
group was 4:6. This is because ERJ database has eight male and
twelve female American speakers. The number of sentences per
American speaker was five (5 × (8 + 12) = 100).

4. The listening test
4.1. Selection of subjects

This listening test was conducted at Indiana University. The
subjects satisfying the following conditions were collected.

• The subject’s mother tongue is American English.

• He/she has no hearing problem.

• He/she has had no experience of talking with Japanese.

173 subjects were collected and their average age was 20.5.
Eighty percent of the subjects were from the State of Indiana.

4.2. Power normalization and white noise addition

Power normalization was done for all the stimuli because ERJ’s
utterances were recorded in different sites, which resulted in
providing utterances of different average power.

For American utterances, in addition to clear utterances, we
prepared noisy ones. Here we prepared utterances with differ-
ent signal-to-noise ratios (SNRs). SN=−5, −2.5, 0.0, 2.5, 5.0,

1A few speakers were assigned to three sentences and another few
speakers were to five sentences. The reason for that is not specified here
because it is trivial.

Table 3: #speakers for each group of pronunciation goodness
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and ∞. ∞ means clear (noise-free) utterances. Totally, we pre-
pared 6×100=600 utterances of American English. The reason
of preparing noisy utterances is that we were interested in to
which value of SNR the Japanese accent is equal in terms of
intelligibility, i.e. word identification rate.

4.3. Procedure of the listening test

The total number of utterances to be presented is 1,400 (400
male Japanese utterances, 400 female Japanese utterances, and
600 American utterances with/without noise). Out of these,
randomly selected 175 utterances were presented to a subject,
where more than one utterance of the same sentence were not
presented to that subject. To facilitate presentation, recording,
and transcription, this listening test was done through a tele-
phone line. A subject makes a call to the designated site and
this starts the listening test. After the subject declared his/her
ID and answered several questions, 175 utterances were pre-
sented. Each one was presented only once. The task was to
repeat what they just heard. The repetitive response was mon-
itored automatically on the other side and when the end of the
response was detected, the next utterance was presented. All the
responses were transcribed by experienced transcribers. Here,
involuntarily spoken utterances such as “I don’t know” or filled
pauses were also transcribed. The total amount of required
time for a subject was approximately 30 minutes. 173 subjects
joined this listening test and we obtained 17,416 transcriptions
for Japanese accented utterances and 12,859 transcriptions for
American utterances with/without white noise.

4.4. Discussion on the obtained trascriptions

For each of the Japanese utterances and the American utter-
ances, 21 American subjects repeated it, resulting in 21 tran-
scriptions on average. For each transcription, we counted
the number of correctly transcribed words semi-automatically,
where errors only by conjugational suffix or by singular/plural
form were treated as correct. A word-based intelligibility score
(word identification rate) was calculated for each utterance.

By referring to the goodness scores in ERJ database, the
100 male Japanese and the 100 female Japanese were clustered
into seven groups, shown in Table 3. For each group, the av-
erage intelligibility score was calculated, which is shown in

Classification of speakers based on their proficiency scores
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Objective measurement of intelligibility
• Transcription browser [Minematsu+’11]

• Many facts of miscommunication
• All the utterances used in the large listening test and their transcriptions will 

be added to the next release of ERJ database.
• A browsing system for the utterances/transcriptions will be included.

• #transcription per utterance is 21 on average.
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Non-native speech data collection
• More useful information source for non-native speech data

• Non-native database in Wikipedia
• http://en.wikipedia.org/wiki/Non-native_speech_database
• Based on [M. Raab+’07]
• 42+ non-native databases are briefly described.

• Data collection is a tough work.
• Resource sharing is very important.
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OUTLINE

• Introduction (TK)

• Segmental Aspect & Speech Recognition Tech. (TK)

•Pronunciation Structure Model (NM)

• Prosodic Aspect (NM)

• Speech Synthesis Tech. for CALL (NM)

• CALL System (TK)

• Database for CALL (NM)
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• Exercise of basic sentence 
production (text & speech), 
given a image scene 

• Key features 
• Dynamic generation of 

questions & ASR grammar 
network with error 
prediction 

• Interactive hints 

H.Wang, C.J.Waple, and T.Kawahara.  
Computer assisted language learning system based on dynamic question 
generation and error prediction for automatic speech recognition.  
Speech Communication, Vol.51, No.10, pp.995--1005, 2009.  



Japanese CALL system: CALLJ @Kyoto Univ. 
How to Try 
• Windows only. 

 
0. (Unzip CALLJ1.5.zip). 
1. Move to the directory CALLJ. 
2. Click “StartCALLJ”. 
3. Create your account by clicking “New” in login window for 

the first time. 
 

• You need some knowledge on Japanese. 
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